Skip to main content
Log in

Impact of HILIC Amino-Based Column Equilibration Conditions on the Analysis of Chitooligosaccharides

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Obtaining well-defined Chitooligosaccharides (COS) structures is very important as their physicochemical and biological properties depends strongly on their degree of polymerization (DP) and degree of N-acetylation (DA). Hydrophilic Interaction Liquid Chromatography (HILIC), that is commonly used for COS analyses, suffers from several drawbacks, related to their complex structure, leading to broadening/splitting of the chromatogram signals. We investigated, herein, on the role of the equilibration step of an amino-based HILIC column on the separation of COS DP ≤ 5. We demonstrated that COS could be separated according to their DP after equilibrating the column by a NaHCO3 buffer solution (100 mM, pH = 10) and mild elution chromatographic parameters (neutral mobile phase, r.t.); or according to their DA after equilibrating the column by an NH4Ac buffer solution (50 mM, pH = 4.5). Also, the nature of the counterion of the column stationary phase was found to affect both retention times and signal profiles of analyzed COS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

Yes (see supporting data file).

Code Availability

Not applicable.

References

  1. Liaqat F, Eltem R (2018) Chitooligosaccharides and their biological activities: a comprehensive review. Carbohyd Polym 184:243–259

    CAS  Google Scholar 

  2. Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25:170–179

    CAS  Google Scholar 

  3. Phil L, Naveed M, Mohammad IS, Bo L, Bin D (2018) Chitooligosaccharide: an evaluation of physicochemical and biological properties with the proposition for determination of thermal degradation products. Biomed Pharmacother 102:438–451

    CAS  PubMed  Google Scholar 

  4. Huang X, Jiao Y, Zhou C (2021) Impacts of chitosan oligosaccharide (COS) on angiogenic activities. Microvasc Res 134:104114

    CAS  PubMed  Google Scholar 

  5. Cheung RC, Ng TB, Wong JH, Chan WY (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. https://doi.org/10.3390/md13085156

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng Rev 2:204–226

    Google Scholar 

  7. Behera HT, Mojumdar A, Das SR, Jema S, Ray L (2020) Production of N-acetyl chitooligosaccharide by novel Streptomyces chilikensis strain RC1830 and its evaluation for anti-radical, anti-inflammatory, anti-proliferative and cell migration potential. Bioresour Technol Rep 11:100428

    Google Scholar 

  8. Hui A, Yan R, Wang W, Wang Q, Zhou Y, Wang A (2020) Incorporation of quaternary ammonium chitooligosaccharides on ZnO/palygorskite nanocomposites for enhancing antibacterial activities. Carbohydr Polym 247:116685

    CAS  PubMed  Google Scholar 

  9. Kidibule PE, Santos-Moriano P, Plou FJ, Fernández-Lobato M (2020) Endo-chitinase Chit33 specificity on different chitinolytic materials allows the production of unexplored chitooligosaccharides with antioxidant activity. Biotechnol Rep (Amst) 27:e00500–e00500

    Google Scholar 

  10. Jafari H, Bernaerts KV, Dodi G, Shavandi A (2020) Chitooligosaccharides for wound healing biomaterials engineering. Mater Sci Eng C 117:111266

    CAS  Google Scholar 

  11. Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63

    CAS  PubMed  Google Scholar 

  12. Halila S, Samain E, Vorgias CE, Armand S (2013) A straightforward access to TMG-chitooligomycins and their evaluation as β-N-acetylhexosaminidase inhibitors. Carbohyd Res 368:52–56

    CAS  Google Scholar 

  13. Tømmeraas K, Vårum KM, Christensen BE, Smidsrød O (2001) Preparation and characterisation of oligosaccharides produced by nitrous acid depolymerisation of chitosans. Carbohyd Res 333:137–144

    Google Scholar 

  14. Trombotto S, Ladavière C, Delolme F, Domard A (2008) Chemical preparation and structural characterization of a homogeneous series of chitin/chitosan oligomers. Biomacromol 9:1731–1738

    CAS  Google Scholar 

  15. Mao S, Shuai X, Unger F, Simon M, Bi D, Kissel T (2004) The depolymerization of chitosan: effects on physicochemical and biological properties. Int J Pharm 281:45–54

    CAS  PubMed  Google Scholar 

  16. Xia Z, Wu S, Chen J (2013) Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide. Int J Biol Macromol 59:242–245

    CAS  PubMed  Google Scholar 

  17. Olicón-Hernández DR, Vázquez-Landaverde PA, Cruz-Camarillo R, Rojas-Avelizapa LI (2017) Comparison of chito-oligosaccharide production from three different colloidal chitosans using the endochitonsanolytic system of Bacillus thuringiensis. Prep Biochem Biotechnol 47:116–122

    PubMed  Google Scholar 

  18. Mutahir Z, Mekasha S, Loose JSM, Abbas F, Vaaje-Kolstad G, Eijsink VGH, Forsberg Z (2018) Characterization and synergistic action of a tetra-modular lytic polysaccharide monooxygenase from Bacillus cereus. FEBS Lett 592:2562–2571

    CAS  PubMed  Google Scholar 

  19. Mekasha S, Tuveng TR, Askarian F, Choudhary S, Schmidt-Dannert C, Niebisch A, Modregger J, Vaaje-Kolstad G, Eijsink VGH (2020) A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin. J Biol Chem 295:9134–9146

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang S-M, Huang Q-Z, Wang Q-S (2005) Study on the synergetic degradation of chitosan with ultraviolet light and hydrogen peroxide. Carbohyd Res 340:1143–1147

    CAS  Google Scholar 

  21. Ajavakom A, Supsvetson S, Somboot A, Sukwattanasinitt M (2012) Products from microwave and ultrasonic wave assisted acid hydrolysis of chitin. Carbohyd Polym 90:73–77

    CAS  Google Scholar 

  22. Dziril M, Grib H, Laribi-Habchi H, Drouiche N, Abdi N, Lounici H, Pauss A, Mameri N (2015) Chitin oligomers and monomers production by coupling γ radiation and enzymatic hydrolysis. J Ind Eng Chem 26:396–401

    CAS  Google Scholar 

  23. Popa-Nita S, Lucas J-M, Ladavière C, David L, Domard A (2009) Mechanisms involved during the ultrasonically induced depolymerization of chitosan: characterization and control. Biomacromol 10:1203–1211

    CAS  Google Scholar 

  24. dos Santos ALW, El Gueddari NE, Trombotto S, Moerschbacher BM (2008) Partially acetylated chitosan oligo- and polymers induce an oxidative burst in suspension cultured cells of the gymnosperm Araucaria angustifolia. Biomacromol 9:3411–3415

    Google Scholar 

  25. Yang Y, Yu B (2014) Recent advances in the synthesis of chitooligosaccharides and congeners. Tetrahedron 70:1023–1046

    CAS  Google Scholar 

  26. Chambon R, Despras G, Brossay A, Vauzeilles B, Urban D, Beau J-M, Armand S, Cottaz S, Fort S (2015) Efficient chemoenzymatic synthesis of lipo-chitin oligosaccharides as plant growth promoters. Green Chem 17:3923–3930

    CAS  Google Scholar 

  27. Semeňuk T, Krist P, Pavlíček J, Bezouška K, Kuzma M, Novák P, Křen V (2001) Synthesis of chitooligomer-based glycoconjugates and their binding to the rat natural killer cell activation receptor NKR-P1. Glycoconj J 18:817–826

    PubMed  Google Scholar 

  28. Le Dévédec F, Bazinet L, Furtos A, Venne K, Brunet S, Mateescu MA (2008) Separation of chitosan oligomers by immobilized metal affinity chromatography. J Chromatogr A 1194:165–171

    PubMed  Google Scholar 

  29. Xiong C, Wu H, Wei P, Pan M, Tuo Y, Kusakabe I, Du Y (2009) Potent angiogenic inhibition effects of deacetylated chitohexaose separated from chitooligosaccharides and its mechanism of action in vitro. Carbohyd Res 344:1975–1983

    CAS  Google Scholar 

  30. Fu Q, Liang T, Zhang X, Du Y, Guo Z, Liang X (2010) Carbohydrate separation by hydrophilic interaction liquid chromatography on a ‘click’ maltose column. Carbohyd Res 345:2690–2697

    CAS  Google Scholar 

  31. Lowenthal MS, Kilpatrick EL, Phinney KW (2015) Separation of monosaccharides hydrolyzed from glycoproteins without the need for derivatization. Anal Bioanal Chem 407:5453–5462

    CAS  PubMed  Google Scholar 

  32. Nagy G, Peng T, Pohl NLB (2017) Recent liquid chromatographic approaches and developments for the separation and purification of carbohydrates. Anal Methods 9:3579–3593

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231–247

    CAS  PubMed  Google Scholar 

  34. Fu Q, Liang T, Li Z, Xu X, Ke Y, Jin Y, Liang X (2013) Separation of carbohydrates using hydrophilic interaction liquid chromatography. Carbohyd Res 379:13–17

    CAS  Google Scholar 

  35. Honda C, Katsuta R, Yamada M, Kojima Y, Mamiya A, Okada N, Kawamura T, Totsuka A, Shindo H, Hosaka M, Nukada T, Tokuoka M (2021) Novel glucoamylase-resistant gluco-oligosaccharides with adjacent α-1, 6 branches at the non-reducing end discovered in Japanese rice wine, sake. Carbohydr Polym 251:116993

    CAS  PubMed  Google Scholar 

  36. Hirata N, Tamura Y, Kasai M, Yanagihara Y, Noguchi K (1992) New, stable polyamine-bonded polymer gel column. J Chromatogr A 592:93–100

    CAS  Google Scholar 

  37. Yoon JH (2005) Enzymatic synthesis of chitooligosaccharides in organic cosolvents. Enzyme Microb Technol 37:663–668

    CAS  Google Scholar 

  38. Dong H, Wang Y, Zhao L, Zhou J, Xia Q, Qiu Y (2015) Key technologies of enzymatic preparation for DP 6–8 chitooligosaccharides. J Food Process Eng 38:336–344

    CAS  Google Scholar 

  39. Abla M, Marmuse L, Delolme F, Vors J-P, Ladavière C, Trombotto S (2013) Access to tetra-N-acetyl-chitopentaose by chemical N-acetylation of glucosamine pentamer. Carbohyd Polym 98:770–777

    CAS  Google Scholar 

  40. Greco G, Letzel T (2013) Main interactions and influences of the chromatographic parameters in HILIC separations. J Chromatogr Sci 51:684–693

    CAS  PubMed  Google Scholar 

  41. Jandera P (2011) Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal Chim Acta 692:1–25

    CAS  PubMed  Google Scholar 

  42. Delas T, Mock-Joubert M, Faivre J, Hofmaier M, Sandre O, Dole F, Chapel JP, Crépet A, Trombotto S, Delair T, Schatz C (2019) Effects of chain length of chitosan oligosaccharides on solution properties and complexation with siRNA. Polymers (Basel) 11:1236

    CAS  PubMed Central  Google Scholar 

  43. Haebel S, Bahrke S, Peter MG (2007) Quantitative sequencing of complex mixtures of heterochitooligosaccharides by vMALDI-linear ion trap mass spectrometry. Anal Chem 79:5557–5566

    CAS  PubMed  Google Scholar 

  44. Xu L, Xia D, Zhang W, Guo Z, Jin G, Zhao Y, Zhang J (2020) Large scale preparation of single chitin oligomers by the combination of homogeneous acid hydrolysis and reversed phase preparative chromatography. Carbohydr Polym Technol Appl 1:100016

    Google Scholar 

  45. Lopes JF, Gaspar EMSM (2008) Simultaneous chromatographic separation of enantiomers, anomers and structural isomers of some biologically relevant monosaccharides. J Chromatogr A 1188:34–42

    CAS  PubMed  Google Scholar 

  46. Fu X, Cebo M, Ikegami T, Lämmerhofer M (2020) Separation of carbohydrate isomers and anomers on poly-N-(1H-tetrazole-5-yl)-methacrylamide-bonded stationary phase by hydrophilic interaction chromatography as well as determination of anomer interconversion energy barriers. J Chromatogr A 1620:460981

    CAS  PubMed  Google Scholar 

  47. Bennett R, Olesik SV (2017) Gradient separation of oligosaccharides and suppressing anomeric mutarotation with enhanced-fluidity liquid hydrophilic interaction chromatography. Anal Chim Acta 960:151–159

    CAS  PubMed  Google Scholar 

  48. Bertuzzi DL, Becher TB, Capreti NMR, Amorim J, Jurberg ID, Megiatto JD Jr, Ornelas C (2018) General protocol to obtain d-glucosamine from biomass residues: shrimp shells cicada sloughs and cockroaches. Global Chall 2:1800046

    Google Scholar 

  49. Pedrali A, Bleve M, Capra P, Jonsson T, Massolini G, Perugini P, Marrubini G (2015) Determination of N-acetylglucosamine in cosmetic formulations and skin test samples by hydrophilic interaction liquid chromatography and UV detection. J Pharm Biomed Anal 107:125–130

    CAS  PubMed  Google Scholar 

  50. Harvey DJ (2011) Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry. J Chromatogr B 879:1196–1225

    CAS  Google Scholar 

  51. Ortner F, Wiemeyer H, Mazzotti M (2017) Interconversion and chromatographic separation of carbohydrate stereoisomers on polystyrene-divinylbenzene resins. J Chromatogr A 1517:54–65

    CAS  PubMed  Google Scholar 

  52. Bawazeer S, Muhsen Ali A, Alhawiti A, Khalaf A, Gibson C, Tusiimire J, Watson DG (2017) A method for the analysis of sugars in biological systems using reductive amination in combination with hydrophilic interaction chromatography and high resolution mass spectrometry. Talanta 166:75–80

    CAS  PubMed  Google Scholar 

  53. Yan J, Shi S, Wang H, Liu R, Li N, Chen Y, Wang S (2016) Neutral monosaccharide composition analysis of plant-derived oligo- and polysaccharides by high performance liquid chromatography. Carbohyd Polym 136:1273–1280

    CAS  Google Scholar 

  54. Kahle V, Tesar̆ik K (1980) Separation of saccharides and their anomers by high-performance liquid chromatography. J Chromatogr A 191:121–128

    CAS  Google Scholar 

  55. Winkworth-Smith CG, MacNaughtan W, Foster TJ (2016) Polysaccharide structures and interactions in a lithium chloride/urea/water solvent. Carbohyd Polym 149:231–241

    CAS  Google Scholar 

  56. Guo Y, Gaiki S (2005) Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography. J Chromatogr A 1074:71–80

    CAS  PubMed  Google Scholar 

  57. Alpert AJ (2018) Effect of salts on retention in hydrophilic interaction chromatography. J Chromatogr A 1538:45–53

    CAS  PubMed  Google Scholar 

  58. Bicker W, Wu J, Yeman H, Albert K, Lindner W (2011) Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: a study on mixed-mode retention mechanisms and the pivotal role of solute–silanol interactions in the hydrophilic interaction chromatography elution mode. J Chromatogr A 1218:882–895

    CAS  PubMed  Google Scholar 

  59. Greco G, Grosse S, Letzel T (2012) Study of the retention behavior in zwitterionic hydrophilic interaction chromatography of isomeric hydroxy- and aminobenzoic acids. J Chromatogr A 1235:60–67

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from Bayer CropScience (La Dargoire, France), the University of Lyon, and the Agence Nationale de la Recherche (“BIOCOS” 10-CD2I-008 research project) are greatly acknowledged. We also thank Mrs. Agnès Crépet for her technical help in HILIC analyses.

Funding

Bayer CropScience (La Dargoire, France), the University of Lyon, and the Agence Nationale de la Recherche (“BIOCOS” 10-CD2I-008 research project).

Author information

Authors and Affiliations

Authors

Contributions

MA: methodology/investigation/formal analysis/writing—original draft. ST: conceptualization/methodology/validation/writing—review and editing/funding acquisition/project administration/supervision. CL: conceptualization/methodology/validation/writing—review and editing/funding acquisition/project administration/supervision.

Corresponding author

Correspondence to Maher Abla.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest nor competing interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abla, M., Ladavière, C. & Trombotto, S. Impact of HILIC Amino-Based Column Equilibration Conditions on the Analysis of Chitooligosaccharides. Chromatographia 85, 55–63 (2022). https://doi.org/10.1007/s10337-021-04109-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04109-9

Keywords

Navigation