Skip to main content
Log in

Concept for gradient-free MRI on twin natural slices

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

The design of an MRI for use in space requires that the hardware be kept to an absolute minimum in terms of mass, complexity, and power. In addition, NASA requirements are that the external stray field needs to be less than 3.2 Gauss, 7 cm from the MRI enclosure.

Theory

RF encoding designs with Halbach magnets offer the best chance of meeting those requirements. Spatially non-uniform magnetic fields with foliations of isomagnetic surfaces, or natural slices, may be used to provide slice selection, and to reduce further the hardware complexity, for TRansmit Array Spatial Encoding (TRASE) Magnetic Resonance Imaging (MRI) or potentially for other radio frequency (RF) encoding methods. The design of such non-uniform magnetic fields in a Halbach configuration with built-in axial gradients leads to pairs of isomagnetic surfaces centered on either side of a central maximum field strength slice. If TRASE images from slices other than the central isomagnetic surface are desired, then the Nuclear Magnetic Resonance (NMR) signals originating from the twin natural slices must be separated during image reconstruction. Here, a design for simultaneously imaging on twin slices in such an inhomogeneous magnetic field using multiple receiver coils with spatially varying RF profiles is described mathematically and numerical simulation examples are given.

Design approach

To achieve RF encoding on the natural slices, at least three TRASE transmit coils are required. Here a solution with twisted solenoid coils is given. To achieve the twin slice separation at least two receive coils are required. Here a solution with two solenoids is given.

Discussion

The MRI design presented here uses a combination of RF encoding (TRASE), a spatial encoding magnetic field (SEM, pairs of natural slices) and receive coil spatial profiles to encode enough information into the NMR signal for image slice reconstruction. The design presented here enables using Halbach magnets with a built-in axial gradient to be used for MRI.

Conclusion

The result is a new gradient-free TRASE MRI design capable of imaging pairs of electronically selectable axial slices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note that we do not distinguish between “Fourier transform” and “inverse Fourier transform” since that is a matter of arbitrary definition. Of course, it is important in practice to get the sign of the exponent correct, otherwise a mirror image of the intended image results.

  2. Here, \(P\rho\) is a low resolution version of \(\rho\) with the resolution limited by the extent of k-space covered.

  3. The units may be considered as meters for a head-size MRI; the 0.1779 number is one used for an actual MRI under development at the time of writing,

References

  1. Sun H, AlZubaidi A, Purchase A, Sharp JC (2020) A geometrically decoupled, twisted solenoid single-axis gradient coil set for TRASE. Magn Reson Med 83:1484–1498

    Article  CAS  PubMed  Google Scholar 

  2. Purchase AR, Vidarsson L, Wachowicz K, Liszkowski P, Sun H, Sarty GE, Sharp JC, Tomanek B (2021) A short and light, sparse dipolar Halbach magnet for MRI. IEEE Access 9:95294–95303

    Article  Google Scholar 

  3. Cooley CZ, Stockmann JP, Armstrong BD, Sarracanie M, Lev MH, Rosen MS, Wald LL (2015) Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils. Magn Reson Med 73:872–873

    Article  PubMed  Google Scholar 

  4. Cooley CZ, McDaniel PC, Stockmann JP, Srinivas SA, Cauley SF, Śliwiak M, Sappo CR, Vaughn CF, Guerin B, Rosen MS, Lev MH, Wald LL (2021) A portable scanner for magnetic resonance imaging of the brain. Nat Biomed Eng 5:229–239

    Article  CAS  PubMed  Google Scholar 

  5. Sarty GE, Vidarsson L (2018) Magnetic resonance imaging with RF encoding on curved natural slices. Magn Reson Imaging 46:47–55

    Article  PubMed  Google Scholar 

  6. Sharp JC, King SB (2010) MRI using radiofrequency magnetic field phase gradients. Magn Reson Med 63:151–161

    Article  PubMed  Google Scholar 

  7. Sharp JC, King SB, Deng Q, Volotovskyy V, Tomanek B (2013) High-resolution MRI encoding using radiofrequency phase gradients. NMR Biomed 26:1602–1607

    Article  PubMed  Google Scholar 

  8. Sarty GE, Obenaus A (2012) Magnetic resonance imaging of astronauts on the international space station and into the solar system. Can Aeronaut Space J 58:60–68

    Article  Google Scholar 

  9. NASA SSP 57000-Revision R-Pressurized payloads interface requirements (2015)

  10. Halbach K (1980) Design of permanent multipole magnets with oriented rare earth cobalt material. Nucl Instrum Methods 169:1–10

    Article  CAS  Google Scholar 

  11. Raich H, Blümler P (2004) Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMRcMandhalas. Concepts Magn Reson B Magn Reson Eng 23B:16–25

    Article  Google Scholar 

  12. Cooley CZ, Haskell MW, Cauley SF, Sappo C, Lapierre CD, Ha CG, Stockmann JP, Wald LL (2018) Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm. IEEE Trans Magn 54:5100112

    Article  PubMed  Google Scholar 

  13. Hugon C, Aguiar PM, Aubert G, Sakellariou D (2010) Design, fabrication and evaluation of a low-cost homogeneous portable permanent magnet for NMR and MRI. Comptes Rendus Chimie 13:388–393

    Article  CAS  Google Scholar 

  14. Ren ZH, Gong J, Huang SY (2019) An irregular-shaped inward-outward ring-pair magnet array with a monotonic field gradient for 2D head imaging in low-field portable MRI. IEEE Access 7:48715–48724

    Article  Google Scholar 

  15. Deng Q, King SB, Volotovskyy V, Tomanek B, Sharp JC (2013) \(B_{1}\) transmit phase gradient coil for single-axis TRASE RF encoding. Magn Reson Imaging 1:891–899

    Article  Google Scholar 

  16. Stockmann JP, Cooley CZ, Guerin B, Rosen MS, Wald LL (2016) Transmit array spatial encoding (TRASE) using broadband WURST pulses for RF spatial encoding in inhomogeneous B0 fields. J Magn Reson 268:36–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun H, Yong S, Sharp JC (2019) The twisted solenoid RF phase gradient transmit coil for TRASE imaging. J Magn Reson 299:135–150

    Article  CAS  PubMed  Google Scholar 

  18. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast Imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  CAS  PubMed  Google Scholar 

  19. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  20. Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G (2001) Use of multicoil arrays for separation of signal for multiple slices simultaneously excited. J Magn Reson Imaging 13:313–317

    Article  CAS  PubMed  Google Scholar 

  21. Hennig J, Welz AM, Schultz G, Korvink J, Liu Z, Speck O, Zaitsev M (2008) Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study. Magn Reson Mater Phys Biol Med 21:5–14

    Article  Google Scholar 

  22. Bohidar P, Sun H, Sharp JC, Sarty GE (2020) The effects of coupled B1 fields in B1 encoded TRASE MRI—a simulation study. Magn Reson Imaging 74:74–83

    Article  PubMed  Google Scholar 

  23. Sarty GE, Scott A, Piche L, McColgan A, Earnshaw C, Turek K, Liszkowski P, Tomanek B, Sharp JC, Tyson R, Lo K, Volotovskyy V, Yin D (2014) Life science research system on the ISS, wrist magnetic resonance imager: ISS-MRI, study phase final technical report, CSA contract deliverable, June 4

  24. Hoult DI (1978) The NMR receiver: a description and analysis of design. Progr NMR Spectrosc 12:41–77

    Article  Google Scholar 

  25. Sarty GE (2021) Natural reconstruction coordinates for imperfect TRASE MRI. Linear Algebra Appl 611:94–117

    Article  Google Scholar 

  26. Shepp LA, Logan BF (1974) The Fourier reconstruction of a head section. IEEE Trans Nucl Sci 21:NS-21-43

    Article  Google Scholar 

  27. Sarty GE, Bennett R, Cox RW (2001) Direct reconstruction of non-Cartesian K-space data using a non-uniform fast Fourier transform. Magn Reson Med 45:908–915

    Article  CAS  PubMed  Google Scholar 

  28. Sarty GE (1997) The natural K-plane coordinate reconstruction method for magnetic resonance imaging: mathematical foundations. Int J Imaging Syst Technol 8:519–528

    Article  Google Scholar 

  29. Rudin W (2017) Fourier analysis on groups. Dover Publications Inc, Mineola

    Google Scholar 

  30. Bellec J, Liu C-Y, King S, Bidinosti C (2011) A target field approach to the design of RF phase-gradient coils. Proceedings of the international society for magnetic resonance in medicine, vol 19, p 723

  31. Kumaragamage S, Lang M, Ostapchuk D, Bidinosti C (2016) \(B_{1}\) phase gradient coil design for low field exploration of TRASE MRI. In: Proceedings of the ESMRMB 33, magnetic resonance materials in physics, biology and medicine, 29(Suppl 1), p S34

  32. Sarty GE, Kontulainen S, AlZubaidi A, Vidarsson L, Warner G, Piche L, Scott A, Mocanita M, Cameron P, Smith K, Spagnuolo T, Turek K, Liszkowski P, Sharp J (2019) PT11—Magnetic resonance imaging instrument for ankles—final technical report, CSA contract deliverable, January 17

  33. Jakob PM, Griswold MA, Edelman RR, Sodickson DK (1998) AUTO-SMASH: a self-calibrating technique for SMASH imaging. Magn Reson Mater Phy 7:42–54

    Article  CAS  Google Scholar 

  34. Heidemann RM, Griswold MA, Haase A, Jakob PM (2001) VD-AUTO-SMASH imaging. Magn Reson Med 45:1066–1074

    Article  CAS  PubMed  Google Scholar 

  35. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  36. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67:1210–1224

    Article  PubMed  Google Scholar 

  37. Kartäusch R, Driessle T, Kampf T, Basse-Lüsebrink TC, Hoelscher UC, Jakob PM, Fidler F, Helluy X (2014) Spatial phase encoding exploiting the Bloch–Siegert shift effect. Magn Reson Mater Phy 27:363–371

    Article  Google Scholar 

  38. Torres E, Froelich T, Wang P, DelaBarre L, Mullen M, Adriany G, Pizetta DC, Martins MJ, Vidoto ELG, Tannús A, Garwood M (2022) \(B_{1}\) gradient-based MRI using frequency-modulated Rabi-encoded echoes. Magn Reson Med 87:674–685

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Natural Sciences and Engineering Research Council (NSERC) Discovery Grant program, grant number RGPIN-2017-03740. Funding for the construction of the Merlin MRI was provided by the Canadian Space Agency, grant number 15FASTA01. The Merlin MRI was constructed by Logi Vidarsson of LT Imaging (Toronto, Ontario, Canada), the NRC Aerospace Research Centre (Ottawa, Ontario, Canada) and Honeywell Aerospace (formerly COM DEV International, Cambridge, Ontario, Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon E. Sarty.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix— Theorem 1

Appendix— Theorem 1

Theorem 1

Let the disentangling map \({{\mathcal {G}}}_{Q}: \mathbb {C}^{Q} \otimes \mathbb {C}^{2} \rightarrow \mathbb {C}^{Q} \otimes \mathbb {C}^{2}\) be defined by the matrices \([G]_{q}\), \(q \in \{ 1, 2, \ldots , Q \}\) as

$$\begin{aligned}{}[G]_{q} \; \vec {V}_{q} = \left[ \begin{array}{cc} G_{11} &{} G_{12} \\ G_{12} &{} G_{22} \end{array} \right] \left[ \begin{array}{c} V_{1,q} \\ V_{2,q} \end{array} \right] = \left[ \begin{array}{c} W_{1,q} \\ W_{2,q} \end{array} \right] = \vec {W}_{q}, \end{aligned}$$

where \({{\mathcal {G}}}_{Q}\) acts on Q vectors \(\vec {V}_{q} \in \mathbb {C}^{2}\) to give Q vectors \(\vec {W}_{q} \in \mathbb {C}^{2}\). The two components of \(\vec {V}_{q}\) represent the signal from the two receive channels when \(Q = n_{k}\), the number of k-space points, and the two slices when \(Q = n\), the number of image points. The two components of \(\vec {W}_{q}\) respectively represent the disentangled Fourier transform of the signals from the two receive channels when \(Q = n_{k}\) and the two slice images when \(Q = n\). Note that \([G]_{q}\) is independent of q (i.e., of “pixel” location); this is an important hypothesis for this theorem.

Define the map (Fourier reconstruction)

$$\begin{aligned} {{\mathcal {P}}} = {P} \otimes {P}: \mathbb {C}^{2} \otimes \mathbb {C}^{n_{k}} \rightarrow \mathbb {C}^{2} \otimes \mathbb {C}^{n} \end{aligned}$$

via

$$\begin{aligned} (P \vec {{\mathcal {V}}}_{c})_{j} = \sum _{\ell =1}^{n_{k}} V_{c,\ell }\,\, e^{i \vec {\varphi }_{\ell ,j} \cdot \vec {\alpha }_{j} }, \end{aligned}$$

where \(\vec {{\mathcal {V}}}_{c} \in \mathbb {C}^{n_{k}}\), \(c \in \{ 1,2 \}\), indexes the channels, j indexes the \(n = n_{x}n_{y}\) pixels for TRASE image reconstruction (\(\vec {\alpha }_{j} \in \mathbb {R}^{2}\) is the coordinate of pixel j in coordinates that match the isophase lines produced by the TRASE coils) and, for TRASE signal reconstruction, \(\vec {\varphi }_{\ell ,j} \in \mathbb {C}^{2}\) are defined as per Ref. [25] (they depend on the choice of k-space pattern and image pixel locations, for Cartesian coordinates, \(\vec {\varphi }_{\ell ,j} = \vec {k}_{\ell ,j}\) is independent of j; explicitly, if \(\vec {\alpha }_{j} = [x_{j},y_{j}]^{T}\) then \(\vec {\varphi }_{\ell ,j} =[k_{x}^{\ell },k_{y}^{\ell }]^{T}\)).

Finally, define \({{\mathcal {T}}}_{Q}: \mathbb {C}^{Q} \otimes \mathbb {C}^{2} \rightarrow \mathbb {C}^{2} \otimes \mathbb {C}^{Q}\) and \({\mathcal {T}}^{-1}_{Q}: \mathbb {C}^{2} \otimes \mathbb {C}^{Q} \rightarrow \mathbb {C}^{Q} \otimes \mathbb {R}^{2}\) by

$$\begin{aligned} {{\mathcal {T}}}_{Q} \left[ \begin{array}{c} \left[ \begin{array}{c} V_{1,1} \\ V_{2,1} \end{array} \right] \\ \vdots \\ \left[ \begin{array}{c} V_{1,q} \\ V_{2,q} \end{array} \right] \\ \vdots \\ \left[ \begin{array}{c} V_{1,Q} \\ V_{2,Q} \end{array} \right] \end{array} \right] = \left[ \begin{array}{c} \left[ \begin{array}{c} V_{1,1} \\ \vdots \\ V_{1,q} \\ \vdots \\ V_{1,Q} \end{array} \right] \\ \\ \left[ \begin{array}{c} V_{2,1} \\ \vdots \\ V_{2,q} \\ \vdots \\ V_{2,Q} \end{array} \right] \end{array} \right] \end{aligned}$$

and

$$\begin{aligned} {{\mathcal {T}}}^{-1}_{Q} \left[ \begin{array}{c} \left[ \begin{array}{c} V_{1,1} \\ \vdots \\ V_{1,q} \\ \vdots \\ V_{1,Q} \end{array} \right] \\ \\ \left[ \begin{array}{c} V_{2,1} \\ \vdots \\ V_{2,q} \\ \vdots \\ V_{2,Q} \end{array} \right] \end{array} \right] = \left[ \begin{array}{c} \left[ \begin{array}{c} V_{1,1} \\ V_{2,1} \end{array} \right] \\ \vdots \\ \left[ \begin{array}{c} V_{1,q} \\ V_{2,q} \end{array} \right] \\ \vdots \\ \left[ \begin{array}{c} V_{1,Q} \\ V_{2,Q} \end{array} \right] \end{array} \right] , \end{aligned}$$

where \(V_{c,q}\) is component q of \(\vec {V}_{c} \in \mathbb {C}^{Q}\).

Then, \({{\mathcal {G}}}_{Q}\) and \({{\mathcal {P}}}\) commute, in the sense that \({{\mathcal {T}}}_{n} {{\mathcal {G}}}_{n} {{\mathcal {T}}}^{-1}_{n} {{\mathcal {P}}} = {{\mathcal {P}}} {{\mathcal {T}}}_{n_{k}} {{\mathcal {G}}}_{n_{k}} {{\mathcal {T}}}^{-1}_{n_{k}}\).

Proof

By calculation. Let \(\vec {{\mathcal {V}}}_{1} \otimes \vec {{\mathcal {V}}}_{2} \in \mathbb {C}^{2} \otimes \mathbb {C}^{n_{k}}\) (i.e. \(\vec {{\mathcal {V}}}_{i} \in \mathbb {C}^{n_{k}}\)), then

$$\begin{aligned}&{{\mathcal {G}}}_{n} {{\mathcal {T}}}^{-1}_{n} {{\mathcal {P}}} (\vec {{\mathcal {V}}}_{1} \otimes \vec {{\mathcal {V}}}_{2}) = {{\mathcal {G}}}_{n} \left[ \begin{array}{c} \sum _{\ell =1}^{n_{k}} V_{1,\ell }\,\, e^{i \vec {\varphi }_{\ell ,1} \cdot \vec {\alpha }_{1} } \\ \sum _{\ell =1}^{n_{k}} V_{2,\ell }\,\, e^{i \vec {\varphi }_{\ell ,1} \cdot \vec {\alpha }_{1} } \\ \vdots \\ \sum _{\ell =1}^{n_{k}} V_{1,\ell }\,\, e^{i \vec {\varphi }_{\ell ,j} \cdot \vec {\alpha }_{j} } \\ \sum _{\ell =1}^{n_{k}} V_{2,\ell }\,\, e^{i \vec {\varphi }_{\ell ,j} \cdot \vec {\alpha }_{j} } \\ \vdots \\ \sum _{\ell =1}^{n_{k}} V_{1,\ell }\,\, e^{i \vec {\varphi }_{\ell ,n} \cdot \vec {\alpha }_{n} } \\ \sum _{\ell =1}^{n_{k}} V_{2,\ell }\,\, e^{i \vec {\varphi }_{\ell ,n} \cdot \vec {\alpha }_{n} } \end{array} \right] \\&\quad = \left[ \begin{array}{cc} \left[ \begin{array}{cc} G_{11} &{} G_{12}\\ G_{21} &{} G_{22} \end{array} \right] &{} \left[ \begin{array}{c} \sum _{\ell =1}^{n_{k}} V_{1,\ell }\,\, e^{i \vec {\varphi }_{\ell ,1} \cdot \vec {\alpha }_{1} } \\ \sum _{\ell =1}^{n_{k}} V_{2,\ell }\,\, e^{i \vec {\varphi }_{\ell ,1} \cdot \vec {\alpha }_{1} } \end{array} \right] \\ \vdots \\ \left[ \begin{array}{cc} G_{11} &{} G_{12}\\ G_{21} &{} G_{22} \end{array} \right] &{} \left[ \begin{array}{c} \sum _{\ell =1}^{n_{k}} V_{1,\ell }\,\, e^{i \vec {\varphi }_{\ell ,j} \cdot \vec {\alpha }_{j} } \\ \sum _{\ell =1}^{n_{k}} V_{2,\ell }\,\, e^{i \vec {\varphi }_{\ell ,j} \cdot \vec {\alpha }_{j} } \end{array} \right] \\ \vdots \\ \left[ \begin{array}{cc} G_{11} &{} G_{12}\\ G_{21} &{} G_{22} \end{array} \right] &{} \left[ \begin{array}{c} \sum _{\ell =1}^{n_{k}} V_{1,\ell }\,\, e^{i \vec {\varphi }_{\ell ,n} \cdot \vec {\alpha }_{n} } \\ \sum _{\ell =1}^{n_{k}} V_{2,\ell }\,\, e^{i \vec {\varphi }_{\ell ,n} \cdot \vec {\alpha }_{n} } \end{array} \right] \end{array} \right] \\&= \left[ \begin{array}{c} \left[ \begin{array}{c} \sum _{\ell =1}^{n_{k}} G_{11} V_{1,\ell }\,\, e^{i \vec {\varphi }_{\ell ,1} \cdot \vec {\alpha }_{1} } + \sum _{\ell =1}^{n_{k}} G_{12} V_{2,\ell }\,\, e^{i \vec {\varphi }_{\ell ,1} \cdot \vec {\alpha }_{1} } \\ \sum _{\ell =1}^{n_{k}} G_{21} V_{1,\ell }\,\, e^{i \vec {\varphi }_{\ell ,1} \cdot \vec {\alpha }_{1} } + \sum _{\ell =1}^{n_{k}} G_{22} V_{2,\ell }\,\, e^{i \vec {\varphi }_{\ell ,1} \cdot \vec {\alpha }_{1} } \end{array} \right] \\ \vdots \\ \left[ \begin{array}{c} \sum _{\ell =1}^{n_{k}} G_{11} V_{1,\ell }\,\, e^{i \vec {\varphi }_{\ell ,j} \cdot \vec {\alpha }_{j} } + \sum _{\ell =1}^{n_{k}} G_{12} V_{2,\ell }\,\, e^{i \vec {\varphi }_{\ell ,j} \cdot \vec {\alpha }_{j} } \\ \sum _{\ell =1}^{n_{k}} G_{21} V_{1,\ell }\,\, e^{i \vec {\varphi }_{\ell ,j} \cdot \vec {\alpha }_{j} } + \sum _{\ell =1}^{n_{k}} G_{22} V_{2,\ell }\,\, e^{i \vec {\varphi }_{\ell ,1} \cdot \vec {\alpha }_{1} } \end{array} \right] \\ \vdots \\ \left[ \begin{array}{c} \sum _{\ell =1}^{n_{k}} G_{11} V_{1,\ell }\, e^{i \vec {\varphi }_{\ell ,n} \cdot \vec {\alpha }_{n} } + \sum _{\ell =1}^{n_{k}} G_{12} V_{2,\ell }\,\, e^{i \vec {\varphi }_{\ell ,n} \cdot \vec {\alpha }_{n} } \\ \sum _{\ell =1}^{n_{k}} G_{21} V_{1,\ell }\,\, e^{i \vec {\varphi }_{\ell ,n} \cdot \vec {\alpha }_{n} } + \sum _{\ell =1}^{n_{k}} G_{22} V_{2,\ell }\,\, e^{i \vec {\varphi }_{\ell ,n} \cdot \vec {\alpha }_{n} } \end{array} \right] \end{array} \right] \\&\quad = \left[ \begin{array}{c} \left[ \begin{array}{c} \sum _{\ell =1}^{n_{k}} (G_{11} V_{1,\ell } + G_{12} V_{2,\ell })\,\, e^{i \vec {\varphi }_{\ell ,1} \cdot \vec {\alpha }_{1} } \\ \sum _{\ell =1}^{n_{k}} (G_{21} V_{1,\ell } + G_{22} V_{2,\ell } )\,\, e^{i \vec {\varphi }_{\ell ,1} \cdot \vec {\alpha }_{1} } \end{array} \right] \\ \vdots \\ \left[ \begin{array}{c} \sum _{\ell =1}^{n_{k}} (G_{11} V_{1,\ell } + G_{12} V_{2,\ell } )\,\, e^{i \vec {\varphi }_{\ell ,j} \cdot \vec {\alpha }_{j} } \\ \sum _{\ell =1}^{n_{k}} (G_{21} V_{1,\ell } + G_{22} V_{2,\ell } )\,\, e^{i \vec {\varphi }_{\ell ,j} \cdot \vec {\alpha }_{j} } \end{array} \right] \\ \vdots \\ \left[ \begin{array}{c} \sum _{\ell =1}^{n_{k}} (G_{11} V_{1,\ell } + G_{12} V_{2,\ell } )\,\, e^{i \vec {\varphi }_{\ell ,n} \cdot \vec {\alpha }_{n} } \\ \sum _{\ell =1}^{n_{k}} (G_{21} V_{1,\ell } + G_{22} V_{2,\ell } )\,\, e^{i \vec {\varphi }_{\ell ,n} \cdot \vec {\alpha }_{n} } \end{array} \right] \end{array} \right] \end{aligned}$$

on one hand and

$$\begin{aligned}&{{\mathcal {T}}}^{-1}_{n} {{\mathcal {P}}} {{\mathcal {T}}}_{n_{k}} {{\mathcal {G}}} _{n_{k}} {{\mathcal {T}}}^{-1}_{n_{k}}(\vec {{\mathcal {V}}}_{1} \otimes \vec {{\mathcal {V}}}_{2}) = {{\mathcal {T}}}^{-1}_{n} {{\mathcal {P}}} {{\mathcal {T}}}_{n_{k}} {{\mathcal {G}}}_{n_{k}} \left[ \begin{array}{c} V_{1,\ell } \\ V_{2,\ell } \\ \vdots \\ V_{1,\ell } \\ V_{2,\ell } \\ \vdots \\ V_{1,\ell } \\ V_{2,\ell } \end{array} \right] \\&\quad = {{\mathcal {P}}} {{\mathcal {T}}}_{n_{k}} \left[ \begin{array}{cc} \left[ \begin{array}{cc} G_{11} &{} G_{12}\\ G_{21} &{} G_{22} \end{array} \right] &{} \left[ \begin{array}{c} V_{1,\ell } \\ V_{2,\ell } \end{array} \right] \\ \vdots \\ \left[ \begin{array}{cc} G_{11} &{} G_{12}\\ G_{21} &{} G_{22} \end{array} \right] &{} \left[ \begin{array}{c} V_{1,\ell } \\ V_{2,\ell } \end{array} \right] \\ \vdots \\ \left[ \begin{array}{cc} G_{11} &{} G_{12}\\ G_{21} &{} G_{22} \end{array} \right] &{} \left[ \begin{array}{c} V_{1,\ell } \\ V_{2,\ell } \end{array} \right] \end{array} \right] \\&= {{\mathcal {T}}}^{-1}_{n} {{\mathcal {P}}} {{\mathcal {T}}}_{n_{k}} \left[ \begin{array}{c} \left[ \begin{array}{c} (G_{11} V_{1,\ell } + G_{12} V_{2,\ell }) \\ (G_{21} V_{1,\ell } + G_{22} V_{2,\ell } ) \end{array} \right] \\ \vdots \\ \left[ \begin{array}{c} (G_{11} V_{1,\ell } + G_{12} V_{2,\ell } ) \\ (G_{21} V_{1,\ell } + G_{22} V_{2,\ell } ) \end{array} \right] \\ \vdots \\ \left[ \begin{array}{c} (G_{11} V_{1,\ell } + G_{12} V_{2,\ell } ) \\ (G_{21} V_{1,\ell } + G_{22} V_{2,\ell } ) \end{array} \right] \end{array} \right] \\&\quad = \left[ \begin{array}{c} \left[ \begin{array}{c} \sum _{\ell =1}^{n_{k}} (G_{11} V_{1,\ell } + G_{12} V_{2,\ell })\,\, e^{i \vec {\varphi }_{\ell ,1} \cdot \vec {\alpha }_{1} } \\ \sum _{\ell =1}^{n_{k}} (G_{21} V_{1,\ell } + G_{22} V_{2,\ell } )\,\, e^{i \vec {\varphi }_{\ell ,1} \cdot \vec {\alpha }_{1} } \end{array} \right] \\ \vdots \\ \left[ \begin{array}{c} \sum _{\ell =1}^{n_{k}} (G_{11} V_{1,\ell } + G_{12} V_{2,\ell } )\,\, e^{i \vec {\varphi }_{\ell ,j} \cdot \vec {\alpha }_{j} } \\ \sum _{\ell =1}^{n_{k}} (G_{21} V_{1,\ell } + G_{22} V_{2,\ell } )\,\, e^{i \vec {\varphi }_{\ell ,j} \cdot \vec {\alpha }_{j} } \end{array} \right] \\ \vdots \\ \left[ \begin{array}{c} \sum _{\ell =1}^{n_{k}} (G_{11} V_{1,\ell } + G_{12} V_{2,\ell } )\,\, e^{i \vec {\varphi }_{\ell ,n} \cdot \vec {\alpha }_{n} } \\ \sum _{\ell =1}^{n_{k}} (G_{21} V_{1,\ell } + G_{22} V_{2,\ell } )\,\, e^{i \vec {\varphi }_{\ell ,n} \cdot \vec {\alpha }_{n} } \end{array} \right] \end{array} \right] . \end{aligned}$$

So,

$$\begin{aligned} {{\mathcal {T}}}_{n} {{\mathcal {G}}}_{n} {{\mathcal {T}}}^{-1}_{n} {{\mathcal {P}}}_{n} (\vec {\mathcal {V}}_{1} \otimes \vec {{\mathcal {V}}}_{2}) = {{\mathcal {P}}} {{\mathcal {T}}}_{n_{k}} {{\mathcal {G}}} _{n_{k}} {{\mathcal {T}}}^{-1}_{n_{k}}(\vec {{\mathcal {V}}}_{1} \otimes \vec {{\mathcal {V}}}_{2}). \end{aligned}$$

\(\square\)

It is interesting to examine the theorem in a little detail. First, note that the map \({{\mathcal {G}}}_{n}\) acts on image space while \({\mathcal {G}}_{n_{k}}\) acts on k-space. So there is no reason to expect that the order of Fourier transformation and disentanglement can be swapped. In general, one has

$$\begin{aligned}{}[G]_{q} \; \vec {V}_{q} = \left[ \begin{array}{cc} G_{11,q} &{} G_{12,q} \\ G_{12,q} &{} G_{22,q} \end{array} \right] \left[ \begin{array}{c} V_{1,q} \\ V_{2,q} \end{array} \right] = \left[ \begin{array}{c} W_{1,q} \\ W_{2,q} \end{array} \right] = \vec {W}_{q}, \end{aligned}$$
(21)

where the values of \([G]_{q}\) are determined from the pixel-by-pixel values of the \(B_{1}\) fields of the two receive coils on the excited natural slices. In general, it is not necessary that \(n = n_{k}\) so the transformation from \({{\mathcal {G}}}_{n}\) to \({{\mathcal {G}}}_{n_{k}}\) will be somewhat complicated in general which would exclude the possibility of swapping the order of application. However, in the limit of a constant \({{\mathcal {G}}}_{n}\), its k-space version \({{\mathcal {G}}}_{n_{k}}\) will be the same even if \(n \ne n_{k}\). That is, the two image functions will be entangled in the same way as their Fourier transforms.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarty, G.E. Concept for gradient-free MRI on twin natural slices. Magn Reson Mater Phy 36, 671–686 (2023). https://doi.org/10.1007/s10334-022-01047-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-022-01047-x

Keywords

Navigation