Skip to main content

Advertisement

Log in

Higher efficiency and lower environmental impact of membrane separation for carbon dioxide capture in coal power plants

  • Original Article
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Global warming may be slowed down by carbon capture and storage systems that allow to sequester carbon dioxide from large fixed point sources such as power plants or industrial facilities that use fossil fuels or biomass as fuel. Nonetheless, these processes often consume a lot of energy and materials, and they emit pollutants. In particular, monoethanolamine regeneration after carbon dioxide absorption is energy-intensive. Alternatively, membrane separation presumably consumes less energy than absorption, yet there is no reported quantitative comparison. Here we compared monoethanolamine absorption and two-stage membrane separation for carbon dioxide separation in a supercritical pulverized coal power plant, using life cycle assessment. We considered 13 midpoint impact categories including global warming, ozone depletion, freshwater eutrophication, marine eutrophication, terrestrial acidification, fossil resource depletion, water resource depletion, metal depletion, terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity, human toxicity and particulate matter formation. Results show that membrane separation is 5% more efficient and requires 11.6% less energy than monoethanolamine absorption. Membrane separation has also lower environmental impact scores versus monoethanolamine absorption, such as 0.495 versus 0.546 for global warming, 0.219 versus 0.243 for human toxicity and 0.284 versus 0.318 for fossil depletion. Overall, the two-stage membrane separation should induce less damage to ecosystems, human health and resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Acknowledgements

This work is partially supported by Liaoning Provincial Doctoral Research Startup Fund Project (2019-BS-159), Liaoning Provincial Department of Education Key Research Project (L2020002) and Scientific Research Fund Project of Education Department of Liaoning Province (LJKZ0381).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Pan or Zhien Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 704 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Pan, Z., Zhang, W. et al. Higher efficiency and lower environmental impact of membrane separation for carbon dioxide capture in coal power plants. Environ Chem Lett 21, 1951–1958 (2023). https://doi.org/10.1007/s10311-023-01596-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-023-01596-0

Keywords

Navigation