Skip to main content
Log in

An economically and environmentally acceptable synthesis of chiral drug intermediate l-pipecolic acid from biomass-derived lysine via artificially engineered microbes

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Deficiency in petroleum resources and increasing environmental concerns have pushed a bio-based economy to be built, employing a highly reproducible, metal contaminant free, sustainable and green biomanufacturing method. Here, a chiral drug intermediate l-pipecolic acid has been synthesized from biomass-derived lysine. This artificial bioconversion system involves the coexpression of four functional genes, which encode l-lysine α-oxidase from Scomber japonicus, glucose dehydrogenase from Bacillus subtilis, Δ1-piperideine-2-carboxylase reductase from Pseudomonas putida, and lysine permease from Escherichia coli. Besides, a lysine degradation enzyme has been knocked out to strengthen the process in this microbe. The overexpression of LysP improved the l-pipecolic acid titer about 1.6-folds compared to the control. This engineered microbial factory showed the highest l-pipecolic acid production of 46.7 g/L reported to date and a higher productivity of 2.41 g/L h and a yield of 0.89 g/g. This biotechnological l-pipecolic acid production is a simple, economic, and green technology to replace the presently used chemical synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adkins J, Jordan J, Nielsen DR (2013) Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Biotechnol Bioeng 110:1726–1734. https://doi.org/10.1002/bit.24828

    Article  PubMed  CAS  Google Scholar 

  2. Anastassiadis S (2007) l-Lysine Fermentation. Recent Pat Biotecnol 1:11–24. https://doi.org/10.2174/187220807779813947

    Article  CAS  Google Scholar 

  3. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2(2006):0028. https://doi.org/10.1038/msb4100073

    Article  PubMed  Google Scholar 

  4. Broquist HP (1991) Lysine-pipecolic acid metabolic relationships in microbes and mammals. Annu Rev Nutr 11:435–448

    Article  PubMed  CAS  Google Scholar 

  5. Cheng J, Chen P, Song A, Wang D, Wang Q (2018) Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-018-2030-8

    Article  PubMed  Google Scholar 

  6. Clevenstine EC, Broquist HP, Harris TM (1979) Biosynthesis of slaframine, (1S, 6S, 8aS)-1-acetoxy-6-aminooctahydroindolizine, a parasympathomimetic alkaloid of fungal origin. 4. Metabolic fate of ethyl pipecolylacetate, 1, 3-dioxooctahydroindolizine, and 1-hydroxyoctahydroindolizine in Rhizoctonia leguminicola. Biochemistry 18:3663–3667

    Article  PubMed  CAS  Google Scholar 

  7. Danson JW, Trawick ML, Cooper AJ (2002) Spectrophotometric assays for l-lysine alpha-oxidase and gamma-glutamylamine cyclotransferase. Anal Biochem 303:120–130. https://doi.org/10.1006/abio.2002.5587

    Article  PubMed  CAS  Google Scholar 

  8. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645. https://doi.org/10.1073/pnas.120163297

    Article  PubMed  CAS  Google Scholar 

  9. Eggeling L, Bott M (2015) A giant market and a powerful metabolism: l-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:3387–3394. https://doi.org/10.1007/s00253-015-6508-2

    Article  PubMed  CAS  Google Scholar 

  10. Eichhorn E, Roduit J-P, Shaw N, Heinzmann K, Kiener A (1997) Preparation of (S)-piperazine-2-carboxylic acid, (S)-piperazine-2-carboxylic acid by kinetic resolution of the corresponding racemic carboxamides with stereoselective amidases in whloe bacterial cells. Tetrahedron Asymmetr 8:2533–2536

    Article  CAS  Google Scholar 

  11. Farid SG, Morris-Stiff G (2015) “OMICS” technologies and their role in foregut primary malignancies. Curr Probl Surg 52:409–441. https://doi.org/10.1067/j.cpsurg.2015.08.001

    Article  PubMed  Google Scholar 

  12. Fernandez-Castane A, Vine CE, Caminal G, Lopez-Santin J (2012) Evidencing the role of lactose permease in IPTG uptake by Escherichia coli in fed-batch high cell density cultures. J Biotechnol 157:391–398. https://doi.org/10.1016/j.jbiotec.2011.12.007

    Article  PubMed  CAS  Google Scholar 

  13. Fujii T, Aritoku Y, Agematu H, Tsunekawa H (2002) Increase in the rate of L-pipecolic acid production using lat-expressing Escherichia coli by lysP and yeiE amplification. Biosci Biotechnol Biochem 66:1981–1984. https://doi.org/10.1271/bbb.66.1981

    Article  PubMed  CAS  Google Scholar 

  14. Fujii T, Mukaihara M, Agematu H, Tsunekawa H (2002) Biotransformation of l-lysine to l-pipecolic acid catalyzed by l-lysine 6-aminotransferase and pyrroline-5-carboxylate reductase. Biosci Biotechnol Biochem 66:622–627. https://doi.org/10.1271/bbb.66.622

    Article  PubMed  CAS  Google Scholar 

  15. Garweg G, Rehren DV, Hintze U (1980) l-Pipecolate formation in the mammalian brain. Regional distribution of D1-pyrroline-2-carboxylate reductase activity. J Neurochem 35:616–621

    Article  PubMed  CAS  Google Scholar 

  16. Gatto GJ, Boyne MT, Kelleher NL, Walsh CT (2006) Biosynthesis of pipecolic acid by RapL, a Lysine cyclodeaminase encoded in the rapamycin gene cluster. J Am Chem Soc 128:3838–3847

    Article  PubMed  CAS  Google Scholar 

  17. Germann UA, Shlyakhter D, Mason VS, Zelle RE, Duffy JP, Galullo V, Armistead DM, Saunders JO, Boger J, Harding MW (1997) Cellular and biochemical characterization of VX-710 as a chemosensitizer: reverasl of P-glycoprotein-mediated multidrug resistance in vitro. Anticancer Drugs 8:125–140

    Article  PubMed  CAS  Google Scholar 

  18. Goto M, Muramatsu H, Mihara H, Kurihara T, Esaki N, Omi R, Miyahara I, Hirotsu K (2005) Crystal structures of Delta1-piperideine-2-carboxylate/Delta1-pyrroline-2-carboxylate reductase belonging to a new family of NAD(P)H-dependent oxidoreductases: conformational change, substrate recognition, and stereochemistry of the reaction. J Biol Chem 280:40875–40884. https://doi.org/10.1074/jbc.M507399200

    Article  PubMed  CAS  Google Scholar 

  19. Gruenheid BS, Canonne-Hergaux F, Gauthier S, Hackam DJ, Grinstein S, Gros P (1999) The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J Exp Med 189:831–841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hafner EW, Wellner D (1979) Reactivity of the imino acids formed in the amino acid oxidase reaction. Biochemistry 18:411–417

    Article  PubMed  CAS  Google Scholar 

  21. Hallen A, Cooper AJ, Jamie JF, Haynes PA, Willows RD (2011) Mammalian forebrain ketimine reductase identified as mu-crystallin; potential regulation by thyroid hormones. J Neurochem 118:379–387. https://doi.org/10.1111/j.1471-4159.2011.07220.x

    Article  PubMed  CAS  Google Scholar 

  22. Hallen A, Cooper AJ, Jamie JF, Karuso P (2015) Insights into enzyme catalysis and thyroid hormone regulation of cerebral ketimine reductase/mu-crystallin under physiological conditions. Neurochem Res 40:1252–1266. https://doi.org/10.1007/s11064-015-1590-5

    Article  PubMed  CAS  Google Scholar 

  23. Hallen A, Jamie JF, Cooper AJ (2013) Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 45:1249–1272. https://doi.org/10.1007/s00726-013-1590-1

    Article  PubMed  CAS  Google Scholar 

  24. Hallen A, Jamie JF, Cooper AJ (2014) Imine reductases: a comparison of glutamate dehydrogenase to ketimine reductases in the brain. Neurochem Res 39:527–541. https://doi.org/10.1007/s11064-012-0964-1

    Article  PubMed  CAS  Google Scholar 

  25. He M (2006) Pipecolic acid in microbes: biosynthetic routes and enzymes. J Ind Microbiol Biotechnol 33:401–407. https://doi.org/10.1007/s10295-006-0078-3

    Article  PubMed  CAS  Google Scholar 

  26. Hutzler J, Dancis J (1975) Lysine-ketoglutarate reductase in human tissues. Biochim Biophys Acta 377:42–51. https://doi.org/10.1016/0005-2744(75)90284-3

    Article  PubMed  CAS  Google Scholar 

  27. Ikeda M (2017) Lysine fermentation: history and genome breeding. Adv Biochem Eng Biotechnol 159:73–102. https://doi.org/10.1007/10_2016_27

    Article  PubMed  CAS  Google Scholar 

  28. Jantama K, Haupt MJ, Svoronos SA, Zhang X, Moore JC, Shanmugam KT, Ingram LO (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 99:1140–1153. https://doi.org/10.1002/bit.21694

    Article  PubMed  CAS  Google Scholar 

  29. Muramatsu H, Mihara H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N (2005) The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of d-lysine and D-proline. J Biol Chem 280:5329–5335. https://doi.org/10.1074/jbc.M411918200

    Article  PubMed  CAS  Google Scholar 

  30. Muramatsu H, Mihara H, Yasuda M, Ueda M, Kurihara T, Esaki N (2006) Enzymatic synthesis of l-pipecolic acid by Delta1-piperideine-2-carboxylate reductase from Pseudomonas putida. Biosci Biotechnol Biochem 70:2296–2298. https://doi.org/10.1271/bbb.60125

    Article  PubMed  CAS  Google Scholar 

  31. Neuner A, Wagner I, Sieker T, Ulber R, Schneider K, Peifer S, Heinzle E (2013) Production of l-lysine on different silage juices using genetically engineered Corynebacterium glutamicum. J Biotechnol 163:217–224. https://doi.org/10.1016/j.jbiotec.2012.07.190

    Article  PubMed  CAS  Google Scholar 

  32. Oh YH, Kang KH, Kwon MJ, Choi JW, Joo JC, Lee SH, Yang YH, Song BK, Kim IK, Yoon KH, Park K, Park SJ (2015) Development of engineered Escherichia coli whole-cell biocatalysts for high-level conversion of l-lysine into cadaverine. J Ind Microbiol Biotechnol 42:1481–1491. https://doi.org/10.1007/s10295-015-1678-6

    Article  PubMed  CAS  Google Scholar 

  33. Perez-Garcia F, Max Risse J, Friehs K, Wendisch VF (2017) Fermentative production of l-pipecolic acid from glucose and alternative carbon sources. Biotechnol J. https://doi.org/10.1002/biot.201600646

    Article  PubMed  Google Scholar 

  34. Perez-Garcia F, Peters-Wendisch P, Wendisch VF (2016) Engineering Corynebacterium glutamicum for fast production of l-lysine and l-pipecolic acid. Appl Microbiol Biotechnol 100:8075–8090. https://doi.org/10.1007/s00253-016-7682-6

    Article  PubMed  CAS  Google Scholar 

  35. Rauschmeier M, Schuppel V, Tetsch L, Jung K (2014) New insights into the interplay between the lysine transporter LysP and the pH sensor CadC in Escherichia coli. J Mol Biol 426:215–229. https://doi.org/10.1016/j.jmb.2013.09.017

    Article  PubMed  CAS  Google Scholar 

  36. Rosen BP (1973) Basic amino acid transport in Escherichia coli. II. Purification and properties of an arginine-specific binding protein. J Biol Chem 248:1211–1218

    PubMed  CAS  Google Scholar 

  37. Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K (2017) Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 35:681–710. https://doi.org/10.1016/j.biotechadv.2017.07.009

    Article  PubMed  CAS  Google Scholar 

  38. Steffes C, Ellis J, Wu J, Rosen BP (1992) The lysp gene encodes the lysine-specific permease. J Bacteriol 174:3242–3249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Stephanopoulos G, Gill RT (2001) After a decade of progress, an expanded role for metabolic engineering. Adv Biochem Eng Biotechnol 73:1–8

    PubMed  CAS  Google Scholar 

  40. Takayama S, Isogai A, Nakata M, Suzuki H, Suzuki A (2014) Structure of Cyl-1, a novel cyclotetrapeptide from Cylindrocladium scoparium. Agric Biol Chem 48:839–842. https://doi.org/10.1080/00021369.1984.10866232

    Article  Google Scholar 

  41. Tan Z, Zhu X, Chen J, Li Q, Zhang X (2013) Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production. Appl Environ Microbiol 79:4838–4844. https://doi.org/10.1128/AEM.00826-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tani Y, Miyake R, Yukami R, Dekishima Y, China H, Saito S, Kawabata H, Mihara H (2015) Functional expression of l-lysine alpha-oxidase from Scomber japonicus in Escherichia coli for one-pot synthesis of l-pipecolic acid from dl-lysine. Appl Microbiol Biotechnol 99:5045–5054. https://doi.org/10.1007/s00253-014-6308-0

    Article  PubMed  CAS  Google Scholar 

  43. Tetsch L, Koller C, Haneburger I, Jung K (2008) The membrane-integrated transcriptional activator CadC of Escherichia coli senses lysine indirectly via the interaction with the lysine permease LysP. Mol Microbiol 67:570–583. https://doi.org/10.1111/j.1365-2958.2007.06070.x

    Article  PubMed  CAS  Google Scholar 

  44. Thomason L, Court DL, Bubunenko M, Costantino N, Wilson H, Datta S, Oppenheim A (2007) Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol. https://doi.org/10.1002/0471142727.mb0116s78

    Article  PubMed  Google Scholar 

  45. Vassilev I, Giesselmann G, Schwechheimer SK, Wittmann C, Virdis B, Kromer JO (2018) Anodic electro-fermentation: anaerobic production of l-lysine by recombinant Corynebacterium glutamicum. Biotechnol Bioeng. https://doi.org/10.1002/bit.26562

    Article  PubMed  Google Scholar 

  46. Wang D, Wu H, Thakker C, Beyersdorf J, Bennett GN, San KY (2015) Efficient free fatty acid production in engineered Escherichia coli strains using soybean oligosaccharides as feedstock. Biotechnol Prog 31:686–694. https://doi.org/10.1002/btpr.2092

    Article  PubMed  CAS  Google Scholar 

  47. Watanabe LA, Haranaka S, Jose B, Yoshida M, Kato T, Moriguchi M, Soda K, Nishino N (2005) An efficient access to both enantiomers of pipecolic acid. Tetrahedron Asymmetr 16:903–908. https://doi.org/10.1016/j.tetasy.2005.01.017

    Article  CAS  Google Scholar 

  48. Watanabe S, Tanimoto Y, Yamauchi S, Tozawa Y, Sawayama S, Watanabe Y (2014) Identification and characterization of trans-3-hydroxy-l-proline dehydratase and Delta(1)-pyrroline-2-carboxylate reductase involved in trans-3-hydroxy-l-proline metabolism of bacteria. FEBS Open Bio 4:240–250. https://doi.org/10.1016/j.fob.2014.02.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Xiao M, Zhu X, Fan F, Xu H, Tang J, Qin Y, Ma Y, Zhang X (2017) Osmotolerance in Escherichia coli is improved by activation of copper efflux genes or supplementation with sulfur-containing amino acids. Appl Environ Microbiol. https://doi.org/10.1128/AEM.03050-16

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yan X, Dong Q, Zheng M, Yang Z (2013) Characterization of a family I-liked alkaline-resistant inorganic pyrophosphatase from the hyperthermophilic archaeon Pyrococcus furiosus for rapid determination of sugar nucleotidyltransferase at high temperature. J Mol Catal B Enzym 98:15–20. https://doi.org/10.1016/j.molcatb.2013.09.011

    Article  CAS  Google Scholar 

  51. Ying H, Tao S, Wang J, Ma W, Chen K, Wang X, Ouyang P (2017) Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli. Microb Cell Fact 16:52. https://doi.org/10.1186/s12934-017-0666-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ying H, Wang J, Wang Z, Feng J, Chen K, Li Y, Ouyang P (2015) Enhanced conversion of l-lysine to l-pipecolic acid using a recombinant Escherichia coli containing lysine cyclodeaminase as whole-cell biocatalyst. J Mol Catal B Enzym 117:75–80. https://doi.org/10.1016/j.molcatb.2015.05.001

    Article  CAS  Google Scholar 

  53. Zhang X, Jantama K, Moore JC, Shanmugam KT, Ingram LO (2007) Production of l-alanine by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:355–366. https://doi.org/10.1007/s00253-007-1170-y

    Article  PubMed  CAS  Google Scholar 

  54. Zhao SW, Sakai A, Zhang XS, Vetting MW, Kumar R, Hillerich B, Francisco BS, Solbiati J, Steves A, Brown S, Akiva E, Barber A, Seidel RD, Babbitt PC, Almo SC, Gerlt JA, Jacobson MP (2014) Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks. https://doi.org/10.7554/elife.03275

    Article  Google Scholar 

  55. Zhou LB, Zeng AP (2015) Engineering a lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum. ACS Synth Biol 4:1335–1340. https://doi.org/10.1021/acssynbio.5b00075

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21206175 and 315014682), the Industrial Biotechnology Program of Tianjin Municipal Science and Technology Commission (14ZCZDSY00066), the Fundamental Research Funds for the Central Universities (Project No. 106112017CDJXFLX0014), and the Henan Provincial Science and technology Open cooperation projects (162106000014). This work was also partially supported by Open Funding Project of the State Key Laboratory of Bioreactor Engineering, Shanghai, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Wang or Qinhong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Huang, Y., Mi, L. et al. An economically and environmentally acceptable synthesis of chiral drug intermediate l-pipecolic acid from biomass-derived lysine via artificially engineered microbes. J Ind Microbiol Biotechnol 45, 405–415 (2018). https://doi.org/10.1007/s10295-018-2044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2044-2

Keywords

Navigation