Skip to main content
Log in

A novel riboregulator switch system of gene expression for enhanced microbial production of succinic acid

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In this paper, a novel riboregulator Switch System of Gene Expression including an OFF-TO-ON switch and an ON-TO-OFF switch was designed to regulate the expression state of target genes between “ON” and “OFF” by switching the identifiability of ribosome recognition site (RBS) based on the thermodynamic stability of different RNA–RNA hybridizations between RBS and small noncoding RNAs. The proposed riboregulator switch system was employed for the fermentative production of succinic acid using an engineered strain of E. coli JW1021, during which the expression of mgtC gene was controlled at “ON” state and that of pepc and ecaA genes were controlled at the “OFF” state in the lag phase and switched to the “OFF” and “ON” state once the strain enters the logarithmic phase. The results showed that using the strain of JW1021, the yield and productivity of succinic acid can reach 0.91 g g−1 and 3.25 g L−1 h−1, respectively, much higher than those using the strains without harboring the riboregulator switch system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balzer GJ, Thakker C, Bennett GN, San KY (2013) Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase. Metab Eng 20:1–8

    Article  CAS  PubMed  Google Scholar 

  2. Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6(7):533–543

    Article  CAS  PubMed  Google Scholar 

  3. Brescia CC, Mikulecky PJ, Feig AL, Sledjeski DD (2003) Identification of the Hfq-binding site on DsrA RNA: Hfq binds without altering DsrA secondary structure. RNA 9:33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63:223–234

    CAS  Google Scholar 

  5. Delihas N, Forst S (2001) MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J Mol Biol 313:1–12

    Article  CAS  PubMed  Google Scholar 

  6. Dong HJ, Nilsson L, Kurland CG (1996) Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol 260:649–663

    Article  CAS  PubMed  Google Scholar 

  7. Egbert RG, Klavins E (2012) Fine-tuning gene networks using simple sequence repeats. P Natl Acda Sci USA 109(42):16817–16822

    Article  CAS  Google Scholar 

  8. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assas-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56

    Article  CAS  PubMed  Google Scholar 

  9. Gu KY, Tian DS, Mao HZ, Wu LF, Yin ZC (2015) Development of marker-free transgenic Jatropha curcas producing curcin-deficient seeds through endosperm-specific RNAi-mediated gene silencing. BMC Plant Biol 15:242

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kai Y, Matsumura H, Lzui K (2003) Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. Arch Biochem Biophys 414:170–179

    Article  CAS  PubMed  Google Scholar 

  11. Kamiya Y, Takagi T, Ooi H, Ito H, Liang XG, Asanuma H (2014) Synthetic gene involving azobenzene-tethered T7 promoter for the photocontrol of gene expression by visible light. ACS Synth Biol 4:365–370

    Article  PubMed  Google Scholar 

  12. Kodaki T, KatagiriF Asano M, Izui K, Katsuki H (1985) Cloning of phosphoenolpyruvate carboxylase gene from a cyanobacterium, Anacystis nidulans, in Escherichia coli. J Biochem 97:533–539

    Article  CAS  PubMed  Google Scholar 

  13. Liu RM, Liang LY, Wu MK, Chen KQ, Jiang M, Ma JF, Wei P, Ouyang PK (2013) CO2 fixation for succinic acid production by engineered Escherichia coli co-expressing pyruvate carboxylase and nicotinic acid phosphoribosyltransferase. Biochem Eng J 79:77–83

    Article  CAS  Google Scholar 

  14. Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Zhu LL (2008) Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresour Technol 99(6):1736–1742

    Article  CAS  PubMed  Google Scholar 

  15. Ma JF, Li F, Liu RM, Liang LY, Ji YL, Wei C, Jiang M, Jia HH, Ouyang PK (2014) Succinic acid production from sucrose and molasses by metabolically engineering E. coli using a cell surface display system. Biochem Eng 91:240–249

    Article  CAS  Google Scholar 

  16. Masse E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740

    Article  CAS  PubMed  Google Scholar 

  18. Moller T, Franch T, Hojrup P, Keene DR, Bachinger HP, Brennan RG, Valentin-Hansen P (2002) Hfq: abacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell 9:23–30

    Article  CAS  PubMed  Google Scholar 

  19. Moller T, Franch T, Udesen C, Gerdes K, ValentinHansen P (2002) Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev 16:1696–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineering Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    Article  CAS  PubMed  Google Scholar 

  21. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355–367

    Article  CAS  PubMed  Google Scholar 

  22. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kridy J (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    Article  CAS  PubMed  Google Scholar 

  23. Sakai Y, Abe K, Nakashima S, Yoshida W, Ferri S, Sode K, Ikebukuro K (2014) Improving the gene-regulation ability of small RNAs by scaffold engineering in Escherichia coli. ACS Synth Biol 3:152–162

    Article  CAS  PubMed  Google Scholar 

  24. Sledjeski D, Gottesman S (1995) A small RNA acts as an antisilencer of the H-NS-silenced rcsA gene of Escherichia coli. Proc Natl Acad Sci USA 92:2003–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sledjeski DD, Gupta A, Gottesman S (1996) The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J 15:3993–4000

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sledjeski DD, Whitman C, Zhang A (2001) Hfq is necessary for regulation by the untranslated RNA DsrA. J Bacteriol 183:1997–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sugiyama H, Hiwa H, Makino K, Kakunaga T (1988) Strong transcriptional promoter in the 5′ upstream region of the human beta-actin gene. Gene 6:135–139

    Google Scholar 

  28. Tong AHY, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CWV, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368

    Article  CAS  PubMed  Google Scholar 

  29. Urban JH, Vogel J (2007) Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res 35:1018–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vellanoweth RL, Rabinowitz JC (1992) The influence of ribosome-bingding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol 6:1105–1114

    Article  CAS  PubMed  Google Scholar 

  31. Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang D, Li Q, Li WL, Xing JM, Su ZG (2009) Improvement of succinic acid production by overexpression of a cyanobacterial carbonic anhydrase in Escherichia coli. Enzyme Microbial Technol 45:491–497

    Article  CAS  Google Scholar 

  33. Wang HC, Wang HY, Wang M, Zhang L, Wang R, Mei YZ, Shao WL (2014) Identification and refinement of two strong constitutive promoters for gene expression system of Schizosaccharomyces pombe. World J Microbiol Biotechnol 30:1809–1817

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Qin DD, Zhang BY, Li Q, Li S, Zhou XH, Dong LC, Wang D (2015) Fine-tuning of ecaA and pepc gene expression increases succinic acid production in Escherichia coli. Appl Microbiol Biot 90:8575–8586

    Article  Google Scholar 

  35. Wang J, Yang L, Wang D, Dong LC, Chen R (2016) Enhanced succinic acid productivity by expression of mgtCB gene in Escherichia coli mutant. J Ind Microbiol Biotechnol 43:505–516

    Article  CAS  PubMed  Google Scholar 

  36. Werpy T, Petersen G (2004) Top value added chemicals from biomass Department of energy, Washington, DC, pp 31–33

  37. Wibur KM, Anderson NG (1948) Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 176:147–154

    Google Scholar 

  38. Yan Q, Zheng P, Dong JJ, Sun ZH (2014) A fibrous bed bioreactor to improve the productivity of succinic acid by Actinobacillus succinogenes. J Chem Technol Biot 89:1760–1766

    Article  CAS  Google Scholar 

  39. Yin DM, Deng SZ, Zhan KH, Cui DQ (2007) High-oleic peanut oils produced by HpRNA-mediated gene silencing of oleate desaturase. Plant Mol Biol Reporter 25:14–163

    Article  Google Scholar 

  40. Zhang XL, Jantama K, Moore JC, Jarboe LR, Shanmugam KT, Ingram LO (2009) Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci USA 106(48):20180–20185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Dr. Rachel Chen (Georgia Tech, Atlanta, USA) for helping data analysis. This work is financially supported by the National Key R&D Program of China (2017YFB0603105), the National Natural Science Foundation of China (21606026, 21776025), the Fundamental Research Funds for the Central Universities (106112017CDJXY220005, 106112017CDJXF220009, 106112017CDJPT220001, 106112017CDJQJ228809, and 106112017CDJXFLX0014), and China Scholarship Council (201506050056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lichun Dong or Ning Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, H., Yang, L. et al. A novel riboregulator switch system of gene expression for enhanced microbial production of succinic acid. J Ind Microbiol Biotechnol 45, 253–269 (2018). https://doi.org/10.1007/s10295-018-2019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2019-3

Keywords

Navigation