Skip to main content
Log in

Modeling of polygalacturonase enzyme activity and biomass production by Aspergillus sojae ATCC 20235

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Aspergillus sojae, which is used in the making of koji, a characteristic Japanese food, is a potential candidate for the production of polygalacturonase (PG) enzyme, which of a major industrial significance. In this study, fermentation data of an A. sojae system were modeled by multiple linear regression (MLR) and artificial neural network (ANN) approaches to estimate PG activity and biomass. Nutrient concentrations, agitation speed, inoculum ratio and final pH of the fermentation medium were used as the inputs of the system. In addition to nutrient conditions, the final pH of the fermentation medium was also shown to be an effective parameter in the estimation of biomass concentration. The ANN parameters, such as number of hidden neurons, epochs and learning rate, were determined using a statistical approach. In the determination of network architecture, a cross-validation technique was used to test the ANN models. Goodness-of-fit of the regression and ANN models was measured by the R 2 of cross-validated data and squared error of prediction. The PG activity and biomass were modeled with a 5-2-1 and 5-9-1 network topology, respectively. The models predicted enzyme activity with an R 2 of 0.84 and biomass with an R 2 value of 0.83, whereas the regression models predicted enzyme activity with an R 2 of 0.84 and biomass with an R 2 of 0.69.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aguado D, Ferrer A, Seco A, Ferrer J (2006) Comparison of different predictive models for nutrient estimation in a sequencing batch reactor for wastewater treatment. Chemom Intell Lab Syst 84:75–81. doi:10.1016/j.chemolab.2006.03.009

    Article  CAS  Google Scholar 

  2. Barthus RC, Mazo LH, Poppi RJ (2005) Simultaneous determination of vitamins C, B6 and PP in pharmaceutics using differential pulse voltammetry with a glass carbon electrode and multivariate calibration tools. J Pharm Biomed Anal 38:94–99

    PubMed  CAS  Google Scholar 

  3. Chen CR, Ramaswamy HS (2003) Analysis of critical control points in deviant thermal processes using artificial neural networks. J Food Eng 57:225–235. doi:10.1016/S0260-8774(02)00301-1

    Article  Google Scholar 

  4. Garcia-Gimeno RM, Hervas-Martinez C, Rodriguez-Perez R, Zurera-Cosano G (2005) Modeling the growth of Leuconostoc mesenteroides by artificial neural networks. Int J Food Microbiol 105:317–332. doi:10.1016/j.ijfoodmicro.2005.04.013

    Article  PubMed  CAS  Google Scholar 

  5. Kiviharju K, Salonen K, Leisola M, Eerikäinen T (2006) Modeling and simulation of Streptomyces peucetius var. caesius N47 cultivation and ε-rhodomycinone production with kinetic equations and neural networks. J Biotechnol 126:365–373. doi:10.1016/j.jbiotec.2006.04.034

    Article  PubMed  CAS  Google Scholar 

  6. Kenedy M, Krouse D (1999) Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biotechnol 23:456–475. doi:10.1038/sj.jim.2900755

    Article  Google Scholar 

  7. Torrecilla JS, Aragon JM, Palancar MC (2005) Modeling the drying of a high-moisture solid with an artificial neural network. Ind Eng Chem Res 44:8057–8066. doi:10.1021/ie0490435

    Article  CAS  Google Scholar 

  8. Moreira G, Micheloud GA, Beccaria AJ, Goicoechea HC (2007) Optimization of the Bacillus thuringiensis var. kurstaki HD-1 δ-endotoxins production by using experimental mixture design and artificial neural networks. Biochem Eng J 35:48–55. doi:10.1016/j.bej.2006.12.025

    Article  CAS  Google Scholar 

  9. Razmi-Rad E, Ghanbarzadeh B, Mousavi SM, Emam-Djomeh Z, Khazaei J (2007) Prediction of rheological properties of Iranian bread dough from chemical composition of wheat flour by artificial neural networks. J Food Eng 81:728–734. doi:10.1016/j.jfoodeng.2007.01.009

    Article  Google Scholar 

  10. Bas D, Boyaci I (2007) Modeling and optimization II: comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J Food Eng 78:846–854. doi:10.1016/j.jfoodeng.2005.11.025

    Article  CAS  Google Scholar 

  11. Huang J, Mei L, Xia J (2006) Application of artificial neural network coupling particle swarm optimization algorithm to biocatalytic production of GABA. Biotechnol Bioeng 96:924–931. doi:10.1002/bit.21162

    Article  Google Scholar 

  12. Desai KM, Akolkar SK, Badhe YP, Tambe SS, Lele SS (2006) Optimization of fermentation media for exopolysaccharide production from Lactobacillus plantarum using artificial intelligence-based techniques. Process Biochem 41:1842–1848. doi:10.1016/j.procbio.2006.03.037

    Article  CAS  Google Scholar 

  13. Alonso-Salces R, Herrero C, Barranco A, Lopez-Marquez D, Berrueta L, Gallo B, Vicente F (2006) Polyphenolic compositions of basque natural ciders: chemometric study. Food Chem 97:438–446. doi:10.1016/j.foodchem.2005.05.022

    Article  CAS  Google Scholar 

  14. Hervas-Martinez C, Garcia-Gimeno R, Martinez-Estudillo A, Martinez-Estudillo F, Zurera-Cosano G (2006) Improving microbial growth prediction by product unit neural networks. J Food Sci 71:M31–M38. doi:10.1111/j.1750-3841.2006.00029.x

    Article  CAS  Google Scholar 

  15. Yuste A, Dorado P (2006) A neural network approach to simulate biodiesel production from waste olive oil. Energy Fuels 20:399–402. doi:10.1021/ef050226t

    Article  CAS  Google Scholar 

  16. Esnoz A, Periago PM, Conesa R, Palop A (2006) Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus. Int J Food Microbiol 106:153–158. doi:10.1016/j.ijfoodmicro.2005.06.016

    Article  PubMed  CAS  Google Scholar 

  17. Alonso-Salces RM, Herrero C, Barranco A, Berrueta LA, Gallo B, Vicente F (2005) Classification of apple fruits according to their maturity state by the pattern recognition analysis of their polyphenolic compositions. Food Chem 93:113–123. doi:10.1016/j.foodchem.2004.10.013

    Article  CAS  Google Scholar 

  18. Hongwen C, Baishan F, Zongding H (2005) Optimization of process parameters for key enzymes accumulation of 1, 3-propanediol production from Klebsiella pneumaniae. Biochem Eng J 25:47–53. doi:10.1016/j.bej.2005.03.011

    Article  Google Scholar 

  19. Spanila M, Pazourek J, Farkova M, Havel J (2005) Optimization of solid-phase extraction using artificial neural networks in combination with experimental design for determination of resveratrol by capillary zone electrophoresis in wines. J Chromatogr A 1084:180–185. doi:10.1016/j.chroma.2004.10.007

    Article  PubMed  CAS  Google Scholar 

  20. Pazourek J, Gajdosova M, Spanila M, Farkova M, Novotna K, Havel J (2005) Analysis of polyphenols in wines: correlation between total phenolic content and antioxidant potential from photometric measurements: prediction of cultivars and vintage from capillary zone electrophoresis fingerprints using artificial neural network. J Chromatogr A 1081:48–54. doi:10.1016/j.chroma.2005.02.056

    Article  PubMed  CAS  Google Scholar 

  21. Dutta J, Dutta P, Banerjee R (2004) Optimization of culture parameters for extracellular protease production from newly isolated Pseudomonas sp. using response surface and artificial neural network models. Process Biochem 39:2193–2198. doi:10.1016/j.procbio.2003.11.009

    Article  CAS  Google Scholar 

  22. Perez-Magarino S, Ortega-Heras M, Gonzalez-San Jose ML, Boger Z (2004) Comparative study of artificial neural network and multivariate methods to classify Spanish DO rose wines. Talanta 62:983–990. doi:10.1016/j.talanta.2003.10.019

    Article  PubMed  CAS  Google Scholar 

  23. Irudayaraj J, Xu F, Tewari J (2003) Rapid determination of invert cane sugar adulteration in honey using FTIR spectroscopy and multivariate analysis. J Food Sci 68:2040–2045. doi:10.1111/j.1365-2621.2003.tb07015.x

    Article  CAS  Google Scholar 

  24. Coleman MC, Buck KKS, Block DE (2003) An integrated approach to optimization of Escherichia coli Fermentations using historical data. Biotechnol Bioeng 84:274–285. doi:10.1002/bit.10719

    Article  PubMed  CAS  Google Scholar 

  25. Castellanos JA, Palancar MC, Aragon JM (2002) Designing and optimizing a neural network for the modeling of a fluidized-bed drying process. Ind Eng Chem Res 41:2262–2269. doi:10.1021/ie000950t

    Article  CAS  Google Scholar 

  26. Iizuka K, Aishima T (1997) Soy sauce classification by geographic region based on NIR spectra and chemometrics pattern recognition. J Food Sci 62:101–104. doi:10.1111/j.1365-2621.1997.tb04377.x

    Article  CAS  Google Scholar 

  27. Sun L, Danzer K, Thiel G (1997) Classification of wine samples by means of artificial neural networks and discrimination analytical methods. Fresenius J Anal Chem 359:143–149. doi:10.1007/s002160050551

    Article  CAS  Google Scholar 

  28. Alkorta I, Garbisu C, Llama MJ, Serra JL (1998) Industrial application of pectic enzymes: a review. Process Biochem 33:21–28. doi:10.1016/S0032-9592(97)00046-0

    Article  CAS  Google Scholar 

  29. Nighojkar S, Phanse Y, Sinha D, Nighojkar A, Kumar A (2006) Production of polygalacturonase by immobilized cells of Aspergillus niger using orange peel as inducer. Process Biochem 41:1136–1140. doi:10.1016/j.procbio.2005.12.009

    Article  CAS  Google Scholar 

  30. Tari C, Gogus N, Tokatli F (2007) Optimization of biomass, pellet size and polygalacturonase production by Aspergillus sojae ATCC 20235 using response surface methodology. Enzyme Microb Technol 40:1108–1116. doi:10.1016/j.enzmictec.2006.08.016

    Article  CAS  Google Scholar 

  31. Panda T, Naidu GSN, Sinha J (1999) Multiresponse analysis of microbiological parameters affecting the production of pectolytic enzymes by Aspergillus niger: a statistical approach. Process Biochem 35:187–195. doi:10.1016/S0032-9592(99)00050-3

    Article  CAS  Google Scholar 

  32. Nguyen D, Widrow B (1990) Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. Proc IJCNN 3:21–26. doi:10.1109/IJCNN.1990.137819

    Google Scholar 

  33. Masters T (1993) Practical neural network recipies in C++. Academic Press, San Francisco

    Google Scholar 

  34. Gevrey M, Dimopoulos I, Lek S (2006) Two-way interaction of input variables in the sensitivity analysis of neural network models. Ecol Modell 195:43–50. doi:10.1016/j.ecolmodel.2005.11.008

    Article  Google Scholar 

  35. Molga EJ (2003) Neural network approach to support modeling of chemical reactors: problems, resolutions, criteria of application. Chem Eng Process 42:675–695. doi:10.1016/S0255-2701(02)00205-2

    Article  CAS  Google Scholar 

  36. Mevik B, Cederkvist HR (2004) Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR). J Chemometr 8:422–429. doi:10.1002/cem.887

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Figen Tokatli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokatli, F., Tari, C., Unluturk, S.M. et al. Modeling of polygalacturonase enzyme activity and biomass production by Aspergillus sojae ATCC 20235. J Ind Microbiol Biotechnol 36, 1139–1148 (2009). https://doi.org/10.1007/s10295-009-0595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0595-y

Keywords

Navigation