Skip to main content

Advertisement

Log in

Application of MOGA-ANN tool for the production of cellulase and xylanase using de-oiled rice bran (DORB) for bioethanol production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

India is the second-largest producer of paddy in the world, with an estimated annual production of 165 metric tons (MT) and about 10.8 MT of rice bran. Partially utilized agro-industrial residues, de-oiled rice bran (DORB) is an unexplored substrate for the production of industrial enzymes. The present study focused on producing and optimizing fungal cellulases and xylanase enzymes by Aspergillus niger VSRK09 under SSF conditions. The effect of physiological parameters was confirmed by one-factor-at-a-time (OFAT), followed by the RSM-based FCCCD method using statistical design. The enzyme-producing abilities of A. niger VSRK09 were improved using a hybrid statistical tool viz. artificial neural network incorporated with a multi-objective genetic algorithm (MOGA-ANN). This study revealed that the MOGA-based model resulted in an optimized enzyme activity, i.e., 24.8 FPU gds−1 and 520 IU gds−1 of cellulase and xylanase, respectively, at incubation time of 3.5 days, a substrate to moisture (SM) ratio of 1:1, and inoculum size of 3.0 × 106 spores mL−1. The validation performance of ANN indicates that the designed model is trained and tested with a minimum mean square error and inserted in MOGA, which produced the best-optimized results. Saccharification of DORB released 320.5 ± 8.75 (mg gds−1) of reducing sugar which was subsequently converted to bioethanol using Saccharomyces cerevisiae yielded 13.48 ± 1.21 g L−1 ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview Bioresour Technol 101(13):4767–74 https://doi.org/10.1016/j.biortech.2009.10.079

    Article  Google Scholar 

  2. Chen X, Yuan X, Chen S, Yu J, Zhai R, Xu Z, Jin M (2021) Densifying Lignocellulosic biomass with alkaline Chemicals (DLC) pretreatment unlocks highly fermentable sugars for bioethanol production from corn stover. Green Chem 23(13):4828–4839. https://doi.org/10.1016/j.renene.2021.10.01

    Article  Google Scholar 

  3. Keshav PK, Banoth C, Kethavath SN, Bhukya B (2021)  Lignocellulosic ethanol production from cotton stalk an overview on pretreatment saccharification and fermentation methods for improved bioconversion process. Biomass Convers Biorefin 1–17. https://doi.org/10.1007/s13399-021-01468-z

    Article  Google Scholar 

  4. Sanjuan-Acosta MJ, Tobón-Manjarres K, Sánchez-Tuirán E, Ojeda-Delgado KA, González-Delgado ÁD (2021) An optimization approach based on superstructures for bioethanol production from African palm kernel shells. Pol J Environ Stud 2293–300. https://doi.org/10.15244/pjoes/127554

  5. Ziaei-Rad Z, Fooladi J, Pazouki M, Gummadi SN (2021) Lignocellulosic biomass pretreatment using low-cost ionic liquid for bioethanol production An economically viable method for wheat straw fractionation. Biomass Bioenerg 151:106140. https://doi.org/10.1016/j.biombioe.2021.106140

    Article  Google Scholar 

  6. Zafar H, Rehman I, Ejaz U, Ansari A, Sohail M (2021) Production of multienzyme by Bacillus aestuarii UE25 using ionic liquid pretreated sugarcane bagasse. J Basic Microbio 61(11):1016–1028. https://doi.org/10.1002/jobm.202100323

    Article  Google Scholar 

  7. Ranjan A, Sahu NP, Deo AD, Kumar HS, Kumar S, Jain KK (2018) Comparative evaluation of fermented and non-fermented de-oiled rice bran with or without exogenous enzymes supplementation in the diet of Labeo rohita (Hamilton, 1822). Fish Physiol Biochem 44(4):1037–1049. https://doi.org/10.1007/s10695-018-0492-2

    Article  Google Scholar 

  8. Azman NF, Abdeshahian P, Kadier A, Al-Shorgani NK, Salih NK, Lananan I, Hamid AA, Kalil MS (2016) Biohydrogen production from de-oiled rice bran as sustainable feedstock in fermentative process. Int J hydrogen energy 41(1):145–156. https://doi.org/10.1016/j.ijhydene.2015.10.018

    Article  Google Scholar 

  9. Chandel AK, Narasu ML, Rudravaram R, Pogaku R and Rao LV (2009) Bioconversion of de-oiled rice bran DORB hemicellulosic hydrolysate into ethanol by Pichia stipitis NCM3499 under optimized conditions. Int J Food Engg 5(1). https://doi.org/10.2202/1556-3758.1453

  10. Chugh P, Kaur J, Soni R, Sharma A, Soni SK (2023) A low-cost process for efficient hydrolysis of deoiled rice bran and ethanol production using an inhouse produced multi-enzyme preparation from Aspergillus niger P-19. J Mater Cycles Waste Manag 25(1):359–375. https://doi.org/10.1007/s10163-022-01538-y

    Article  Google Scholar 

  11. Salihu A, Alam MZ, AbdulKarim MI, Salleh HM (2012) Lipase production: an insight in the utilization of renewable agricultural residues. Resour Conserv Recycl 36–44. https://doi.org/10.1016/j.resconrec.2011.10.007

  12. Kumar V, Bahuguna A, Ramalingam S, Kim M (2021) Developing a sustainable bioprocess for the cleaner production of xylooligosaccharides an approach towards lignocellulosic waste management. J Clean Prod 316:128332. https://doi.org/10.1016/j.jclepro.2021.128332

    Article  Google Scholar 

  13. Patel A, Shah AR (2021) Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value-added products. J Bioresour Bioprod 6(2):108–128. https://doi.org/10.1016/j.jobab.2021.02.001

    Article  Google Scholar 

  14. dos Santos Costa R, de Almeida SS, Cavalcanti ED, Freire DM, Moura-Nunes N, Monteiro M, Perrone D (2021) Enzymes produced by solid-state fermentation of agro-industrial by products release ferulic acid in bioprocessed whole wheat breads. Food Res Int 140:109843. https://doi.org/10.1016/j.foodres.2020.109843

    Article  Google Scholar 

  15. Subhosh Chandra M, Suresh Yadav P, Bramhachari PV, Golla N (2021) Influence of significant parameters on cellulase production by solid state fermentation. Bioenerg Res Basic Adv Concepts Springer Singapore 73:91. https://doi.org/10.1007/978-981-33-4611-6_3

  16. Taherzadeh-Ghahfarokhi M, Panahi R, Mokhtarani B (2022) Medium supplementation and thorough optimization to induce carboxymethyl cellulase production by Trichoderma reesei under solid-state fermentation of nettle biomass. Prep Biochem Biotechnol 52(4):375–382. https://doi.org/10.1080/10826068.2021.1952599

    Article  Google Scholar 

  17. Maitan-Alfenas GP, Visser EM, Guimarães VM (2015) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste invaluable products. Curr Opin Food Sci 1:44–49. https://doi.org/10.1016/j.cofs.2014.10.001

    Article  Google Scholar 

  18. Usmani Z, Sharma M, Awasthi AK, Lukk T, Tuohy MG, Gong L, Nguyen-Tri P, Goddard AD, Bill RM, Nayak SC, Gupta VK (2021) Lignocellulosic biorefineries the current state of challenges and strategies for efficient commercialization. Renew Sustain Energy Rev 148:111258. https://doi.org/10.1016/j.rser.2021.111258

    Article  Google Scholar 

  19. Bagewadi ZK, Mulla SI, Ninnekar HZ (2018) Optimization of endoglucanase production from Trichoderma harzianum strain HZN11 by central composite design under response surface methodology. Biomass Convers Biorefin (2):305–316. https://doi.org/10.1007/s13399-017-0285-3

    Article  Google Scholar 

  20. de Souza MF, da Silva Bon EP, da Silva AS (2021) Production of cellulases and β-glucosidases by Trichoderma reesei Rut C30 using steam-pretreated sugarcane bagasse: an integrated approach for onsite enzyme production. Braz J Chem Eng 38(3):435–442. https://doi.org/10.1007/s43153-021-00114-5

    Article  Google Scholar 

  21. Dong M, Wang S, Xu F, Xiao G, Bai J (2021) Efficient utilization of waste paper as an inductive feedstock for simultaneous production of cellulase and xylanase by Trichoderma longiflorum. J Clean Prod 308:127287. https://doi.org/10.1016/j.jclepro.2021.127287

    Article  Google Scholar 

  22. Jia W, Ge M, Zhang Z, Zhang D, Gao L (2021) Mechanism study of novel inducer combinations containing laver powder for Penicillium piceum lignocellulolytic enzyme production. Glob Change Biol Bioen (4):656–64. https://doi.org/10.1111/gcbb.12811

    Article  Google Scholar 

  23. Dahiya S, Kumar A, Malik V, Kumar V, Singh B (2021) Biochemical characterization and enhanced production of endoxylanase from thermophilic mould Myceliophthora thermophila. Bioprocess Biosyst Eng 44(7):1539–55. https://doi.org/10.1007/s00449-021-02539-1

  24. Desai DI, Iyer BD (2020) Optimization of medium composition for cellulose free xylanase production by solid-state fermentation on corn cob waste by Aspergillus niger DX-23. Biomass Convers Biorefin 1–3. https://doi.org/10.1007/s13399-020-00749-3

  25. Kumari N, Bansal S (2021) Statistical modeling and optimization of microbial phytase production towards utilization as a feed supplement. Biomass Convers Biorefin 1–1. https://doi.org/10.1007/s13399-021-01672-x

  26. Yakubu A, Uba G, Vyas A (2021) Optimization of culture conditions for the production of alkaline cellulase enzyme produced from Fusarium oxysporum VSTPDK. J Env Microbio Toxicol 9(1):3–9. https://doi.org/10.54987/jemat.v9i1.597

  27. Chaudhary T, Yadav D, Chhabra D, Gera R, Shukla P (2021) Low cost media engineering for phosphate and IAA production by Kosakonia pseudosacchari TCPS 4 using Multi objective Genetic Algorithm MOGA statistical tool. 3 Biotech 11(4):1–1. https://doi.org/10.1007/s13205-021-02690-2

  28. Jugwanth Y, Sewsynker-Sukai Y, Kana EG (2020) Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation Optimization and kinetic studies. Fuel 262:116552. https://doi.org/10.1016/j.fuel.2019.116552

    Article  Google Scholar 

  29. Karp SG, Rozhkova AM, Semenova MV, Osipov DO, de Pauli ST, Sinitsyna OA, Zorov IN, de SouzaVandenberghe LP, Soccol CR, Sinitsyn AP (2021) Designing enzyme cocktails from Penicillium and Aspergillus species for the enhanced saccharification of agro-industrial wastes. Bioresour Technol 330:124888. https://doi.org/10.1016/j.biortech.2021.124888

    Article  Google Scholar 

  30. Ganguly P, Das P (2022) Integral approach for second generation bio ethanol production and wastewater treatment using peanut shell waste yield removal and ANN studies. Biomass Convers Biorefin 1-1. https://doi.org/10.1007/s13399-021-02277-0

  31. Kalim B, Ali NM (2016) Optimization of fermentation media and growth conditions for microbial xylanase production. 3 Biotech 6(2):1–7. https://doi.org/10.1007/s13205-016-0445-3

  32. Ray S and Trivedi U (2020) Production purification and characterization of cellulase as biotic elicitor In Biotic elicitors production, purification and characterization. (pp. 3–11) New York NY Springer US. https://doi.org/10.1007/978-1-0716-2601-6_1

  33. Ghose TK (1987) Measurements of cellulase activities. Pure Appl Chem 59(2):257–268. https://doi.org/10.1351/pac198759020257

    Article  Google Scholar 

  34. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J biotechnol 23(3):257–270. https://doi.org/10.1016/0168-1656(92)90074-J

    Article  Google Scholar 

  35. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  36. Caputi A, Ueda M, Brown T (1968) Spectrophotometric determination of ethanol in wine. American J Enology Viticulture 19(3):160–165

    Google Scholar 

  37. Kumari AA, Sunilson JA, Prema M, Vinayagamurthi MR (2021) Isolation and screening of cellulolytic fungi from mangrove ecosystem. AIP Conf Proc 2378:1–020023. https://doi.org/10.1063/5.0058314

  38. Wisdawati E, Kuswinanti T, Rosmana A, Nasruddin A (2021) Screening and identification of cellulolytic fungi at rhizosphere of safira taro plant. IOP Conf Ser Earth Environ Sci 807(2):022041. https://doi.org/10.1088/1755-1315/807/2/022041/meta

    Article  Google Scholar 

  39. Singh S, Moholkar VS, Goyal A (2014) Optimization of carboxymethylcellulase production from Bacillus amyloliquefaciens SS35. 3 Biotech 4(4):411–424. https://doi.org/10.1007/s13205-013-0169-6

  40. Grover A, Maninder A, Sarao LK (2013) Production of fungal amylase and cellulase enzymes via solid state fermentation using Aspergillus oryzae and Trichoderma reesei. Int J Adv Res Technol 2(8):108–124

    Google Scholar 

  41. Gautam A, Kumar A, Dutt D (2015) Production of cellulase-free xylanase by Aspergillus flavus ARC-12 using pearl millet stover as the Substrate under solid-state fermentation. Adv Enzym Res 1:1–9

    Google Scholar 

  42. Irfan M, Nadeem M, Syed Q (2014) One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J Radiat Res Appl Sci 7(3):317–326. https://doi.org/10.1016/j.jrras.2014.04.004

    Article  Google Scholar 

  43. Javed MM, Khan TS (2006) An innovative approach for hyperproduction of cellulolytic and hemicellulolytic enzymes by consortium of Aspergillus niger MSK-7 and Trichoderma viride MSK-10. Afr J Biotechnol 5(8):609–614

    Google Scholar 

  44. Chugh P, Soni R, Soni SK (2016) De oiled rice bran a substrate for co-production of a consortium of hydrolytic enzymes by Aspergillus niger P-19. Waste Biomass Valori 7(3):513–525. https://doi.org/10.1007/s12649-015-9477-x

  45. Hamrouni R, Claeys-Bruno M, Molinet J, Masmoudi A, Roussos S, Dupuy N (2020) Challenges of enzymes conidia and 6 pentyl alpha pyrone production from solid-state-fermentation of agroindustrial wastes using experimental design and T asperellum strains. Waste Biomass Valori 11(11):5699–5710. https://doi.org/10.1007/s12649-019-00908-2

  46. Moran-Aguilar MG, Costa-Trigo I, Calderón-Santoyo M, Domínguez JM, Aguilar-Uscanga MG (2021) Production of cellulases and xylanases in solid state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain. Biochem Eng J 172:108060. https://doi.org/10.1016/j.bej.2021.108060

    Article  Google Scholar 

  47. Srivastava N, Elgorban AM, Mishra PK, Marraiki N, Alharbi AM, Ahmad I, Gupta VK (2020) Enhance production of fungal cellulase cocktail using cellulosic waste. Environ Technol Innov 19:100949. https://doi.org/10.1016/j.eti.2020.100949

    Article  Google Scholar 

  48. Ang SK, Shaza EM, Adibah Y, Suraini AA, Madihah MS (2013) Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem 48(9):1293–1302. https://doi.org/10.1016/j.procbio.2013.06.019

    Article  Google Scholar 

  49. Derman E, Abdulla R, Marbawi H, Sabullah MK, Gansau JA, Ravindra P (2022)  Simultaneous saccharification and fermentation of empty fruit bunches of palm for bioethanol production using a microbial consortium of S cerevisiae and T harzianum Fermentation 8(7):295. https://doi.org/10.3390/fermentation8070295

    Article  Google Scholar 

Download references

Funding

This work was financially supported by Maharshi Dayanand University, Rohtak, India.

Author information

Authors and Affiliations

Authors

Contributions

Vicky Saharan: conceptualization, investigation, methodology, validation, formal analysis, resources, data curation, writing original draft, writing review and editing; Surya Tushir: writing review and editing, formal analysis, resources; Jagdeep Singh: writing review and editing, formal analysis; Naveen Kumar: writing review and editing, formal analysis; Deepak Chhabra: validation, formal analysis, data curation; Rajeev Kumar Kapoor: writing review and editing, visualization, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Rajeev Kumar Kapoor.

Ethics declarations

Ethical approval

Not Applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Vicky Saharan and Surya Tushir contributed equally to this study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1286 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saharan, V., Tushir, S., Singh, J. et al. Application of MOGA-ANN tool for the production of cellulase and xylanase using de-oiled rice bran (DORB) for bioethanol production. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04022-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04022-1

Keywords

Navigation