Skip to main content

Advertisement

Log in

Quantitative magnetic resonance evaluation of the trigeminal nerve in familial dysautonomia

  • Short Communication
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

Familial dysautonomia (FD) is a rare autosomal recessive disease that affects the development of sensory and autonomic neurons, including those in the cranial nerves. We aimed to determine whether conventional brain magnetic resonance imaging (MRI) could detect morphologic changes in the trigeminal nerves of these patients.

Methods

Cross-sectional analysis of brain MRI of patients with genetically confirmed FD and age- and sex-matched controls. High-resolution 3D gradient-echo T1-weighted sequences were used to obtain measurements of the cisternal segment of the trigeminal nerves. Measurements were obtained using a two-reader consensus.

Results

Twenty pairs of trigeminal nerves were assessed in ten patients with FD and ten matched controls. The median (interquartile range) cross-sectional area of the trigeminal nerves in patients with FD was 3.5 (2.1) mm2, compared to 5.9 (2.0) mm2 in controls (P < 0.001). No association between trigeminal nerve area and age was found in patients or controls.

Conclusions

Using conventional MRI, the caliber of the trigeminal nerves was significantly reduced bilaterally in patients with FD compared to controls, a finding that appears to be highly characteristic of this disorder. The lack of correlation between age and trigeminal nerve size supports arrested neuronal development rather than progressive atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Axelrod FB, Hilz MJ, Berlin D, Yau PL, Javier D, Sweat V, Bruehl H, Convit A (2010) Neuroimaging supports central pathology in familial dysautonomia. J Neurol 257:198–206

    Article  PubMed  Google Scholar 

  2. Barlow SM (2009) Central pattern generation involved in oral and respiratory control for feeding in the term infant. Curr Opin Otolaryngol Head Neck Surg 17:187–193

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brown WJ, Beauchemin JA, Linde LM (1964) A Neuropathological study of familial dysautonomia (Riley–Day Syndrome) in siblings. J Neurol Neurosurg Psychiatry 27:131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brunt PW, McKusick VA (1970) Familial dysautonomia. A report of genetic and clinical studies, with a review of the literature. Medicine 49:343–374

    Article  CAS  PubMed  Google Scholar 

  5. Geltzer AI, Gluck L, Talner NS, Polesky HF (1964) Familial dysautonomia; studies in a newborn infant. N Engl J Med 271:436–440

    Article  CAS  PubMed  Google Scholar 

  6. Gutierrez JV, Kaufmann H, Palma JA, Mendoza-Santiesteban C, Macefield VG, Norcliffe-Kaufmann L (2017) Founder mutation in IKBKAP gene causes vestibular impairment in familial dysautonomia. Clin Neurophysiol 129:390–396

    Article  PubMed  Google Scholar 

  7. Gutierrez JV, Norcliffe-Kaufmann L, Kaufmann H (2015) Brainstem reflexes in patients with familial dysautonomia. Clin Neurophysiol 126:626–633

    Article  PubMed  Google Scholar 

  8. Halpern H, Hochberg I, Rees N (1967) Speech and hearing characteristics in familial dysautonomia. J Speech Hear Res 10:361–366

    Article  CAS  PubMed  Google Scholar 

  9. Lefcort F, Mergy M, Ohlen SB, Ueki Y, George L (2017) Animal and cellular models of familial dysautonomia. Clin Autonom Res 27:235–243

    Article  Google Scholar 

  10. Maayan C, Kaplan E, Shachar S, Peleg O, Godfrey S (1987) Incidence of familial dysautonomia in Israel 1977–1981. Clin Genet 32:106–108

    Article  CAS  PubMed  Google Scholar 

  11. Mackie IA (1995) Neuroparalytic keratitis. In: Fraunfelder F, Roy FH, Meyer SM (eds) Current ocular therapy. Saunders, Philadelphia, pp 452–454

    Google Scholar 

  12. Mahloudji M, Brunt PW, McKusick VA (1970) Clinical neurological aspects of familial dysautonomia. J Neurol Sci 11:383–395

    Article  CAS  PubMed  Google Scholar 

  13. Margulies SI, Brunt PW, Donner MW, Silbiger ML (1968) Familial dysautonomia. A cineradiographic study of the swallowing mechanism. Radiology 90:107–112

    Article  CAS  PubMed  Google Scholar 

  14. Mass E, Gadoth N (1994) Oro-dental self-mutilation in familial dysautonomia. J Oral Pathol Med 23:273–276

    Article  CAS  PubMed  Google Scholar 

  15. Mass E, Sarnat H, Ram D, Gadoth N (1992) Dental and oral findings in patients with familial dysautonomia. Oral Surg Oral Med Oral Pathol 74:305–311

    Article  CAS  PubMed  Google Scholar 

  16. Mendoza-Santiesteban CE, Palma JA, Norcliffe-Kaufmann L, Kaufmann H (2017) Familial dysautonomia: a disease with hidden tears. J Neurol 264:1290–1291

    Article  PubMed  PubMed Central  Google Scholar 

  17. Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H (2017) Familial dysautonomia: history, genotype, phenotype and translational research. Prog Neurobiol 152:131–148

    Article  PubMed  Google Scholar 

  18. Palma JA, Norcliffe-Kaufmann L, Fuente-Mora C, Percival L, Mendoza-Santiesteban C, Kaufmann H (2014) Current treatments in familial dysautonomia. Expert Opin Pharmacother 15:2653–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Palma JA, Spalink C, Barnes EP, Norcliffe-Kaufmann L, Kaufmann H (2018) Neurogenic dysphagia with undigested macaroni and megaesophagus in familial dysautonomia. Clin Autonom Res 28:125–126

    Article  Google Scholar 

  20. Pearson J, Pytel B (1978) Quantitative studies of ciliary and sphenopalatine ganglia in familial dysautonomia. J Neurol Sci 39:123–130

    Article  CAS  PubMed  Google Scholar 

  21. Pearson J, Pytel BA (1978) Quantitative studies of sympathetic ganglia and spinal cord intermedio-lateral gray columns in familial dysautonomia. J Neurol Sci 39:47–59

    Article  CAS  PubMed  Google Scholar 

  22. Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP, Liebert CB, Chadwick B, Idelson M, Reznik L, Robbins C, Makalowska I, Brownstein M, Krappmann D, Scheidereit C, Maayan C, Axelrod FB, Gusella JF (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68:598–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yousry I, Camelio S, Schmid UD, Horsfield MA, Wiesmann M, Brückmann H, Yousry TA (2000) Visualization of cranial nerves I–XII: value of 3D CISS and T2-weighted FSE sequences. Eur Radiol 10:1061–1067

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

National Institutes of Health (U54-NS065736-01) and Familial Dysautonomia Foundation, Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Horacio Kaufmann or Yvonne W. Lui.

Ethics declarations

Conflict of interest

Dr. Palma receives funding support from the Familial Dysautonomia Foundation and is Managing Editor of Clinical Autonomic Research. Dr. Norcliffe-Kaufmann receives funding support from the Familial Dysautonomia Foundation. Dr. Kaufmann receives funding support from the Familial Dysautonomia Foundation and is Editor-in-Chief of Clinical Autonomic Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, E., Palma, JA., Kaufmann, H. et al. Quantitative magnetic resonance evaluation of the trigeminal nerve in familial dysautonomia. Clin Auton Res 29, 469–473 (2019). https://doi.org/10.1007/s10286-019-00593-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-019-00593-0

Keywords

Navigation