Skip to main content

Advertisement

Log in

NLRP10 promotes AGEs-induced NLRP1 and NLRP3 inflammasome activation via ROS/MAPK/NF-κB signaling in human periodontal ligament cells

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM), characterized by production and accumulation of advanced glycation end products (AGEs), induces and promotes chronic inflammation in tissues, including periodontal tissue. Increasing amount of epidemiological and experimental evidence demonstrated that more extensive inflammatory reaction and bone resorption occurred in periodontal tissues in diabetic patients with periodontitis, which is speculated to be related to NLRP3 inflammasome. NLRP10 is the only NOD-like receptor protein lacking leucine-rich repeats, suggesting that NLRP10 may be a regulatory protein. The aim of this study was to investigate the regulatory role of NLRP10 on NLRP1 and NLRP3 inflammasome in human periodontal ligament cells (HPDLCs) under AGEs treatment. Expression of NLRP10 in HPDLCs stimulated with 100 ug/mL AGEs for 24 h was observed. Detection of TRIM31 is conducted, and in TRIM31-overexpressed HPDLCs, the interaction between NLRP10 with TRIM31 as well as NLRP10 with ubiquitination were explored by immunoprecipitation. Under AGEs stimulation, the activation of reactive oxidative stress (ROS) and inflammatory signaling pathway (NF-κB, MAPK pathway) was detected by biomedical microscope and western blot (WB), respectively. After stimulation with AGEs for 24 h with or without silencing NLRP10, inflammatory cytokines (IL-6 and IL-1β), NF-κB, MAPK pathway, ROS, and components of inflammasome were assessed. In HPDLCs, we found AGEs induced NLRP10 and inhibited TRIM31. TRIM31 overexpression significantly enhanced interaction between TRIM31 and NLRP10, then induced proteasomal degradation of NLRP10. Moreover, under AGEs stimulation, NLRP10 positively regulates NLRP1, NLRP3 inflammasomes by activating NF-κB, MAPK pathway, and increasing ROS, finally promoting the expression of inflammatory cytokines. Together, we, for the first time, confirmed that NLRP10 could promote inflammatory response induced by AGEs in HPDLCs via activation of NF-κB, and MAPK pathway and increasing ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The analyzed data sets generated during the present study are available from the corresponding author on reasonable request.

References

  1. Slots J. Periodontitis: Facts, fallacies and the future. Periodontol 2000. 2017;75(1):7–23. https://doi.org/10.1111/prd.12221.

    Article  PubMed  Google Scholar 

  2. Kwon T, Lamster IB, Levin L. Current concepts in the management of periodontitis. Int Dent J. 2021;71(6):462–76. https://doi.org/10.1111/idj.12630.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bianchi S, Mancini L, Torge D, Cristiano L, Mattei A, Varvara G, et al. Bio-Morphological reaction of human periodontal ligament fibroblasts to different types of dentinal derivates: In vitro study. Int J Mol Sci. 2021;22(16):8681. https://doi.org/10.3390/ijms22168681.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Ling J, Jiang Q. Inflammasomes in alveolar bone loss. Front Immunol. 2021;12:691013. https://doi.org/10.3389/fimmu.2021.691013.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Beertsen W, Mcculloch C, Sodek J. The periodontal ligament: a unique, multifunctional connective tissue. Periodontol. 2000;1997(13):20–40. https://doi.org/10.1111/j.1600-0757.1997.tb00094.x.

    Article  Google Scholar 

  6. Kocher T, König J, Borgnakke WS, Pink C, Meisel P. Periodontal complications of hyperglycemia/diabetes mellitus: epidemiologic complexity and clinical challenge. Periodontol 2000. 2018;78(1):59–97. https://doi.org/10.1111/prd.12235.

    Article  PubMed  Google Scholar 

  7. Polak D, Shapira L. An update on the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Clin Periodontol. 2018;45(2):150–66. https://doi.org/10.1111/jcpe.12803.

    Article  PubMed  Google Scholar 

  8. Shin JJ, Lee EK, Park TJ, Kim W. Damage-associated molecular patterns and their pathological relevance in diabetes mellitus. Ageing Res Rev. 2015;24(Pt A):66–76. https://doi.org/10.1016/j.arr.2015.06.004.

    Article  PubMed  Google Scholar 

  9. Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol. 2020;15:493–518. https://doi.org/10.1146/annurev-pathmechdis-012419-032847.

    Article  PubMed  Google Scholar 

  10. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44:129–46. https://doi.org/10.1007/s001250051591.

    Article  PubMed  Google Scholar 

  11. Sruthi CR, Raghu KG. Advanced glycation end products and their adverse effects: the role of autophagy. J Biochem Mol Toxic. 2021;35:e22710. https://doi.org/10.1002/jbt.22710.

    Article  Google Scholar 

  12. Yi X, Zhang L, Lu W, Tan X, Yue J, Wang P, et al. The effect of NLRP inflammasome on the regulation of AGEs-induced inflammatory response in human periodontal ligament cells. J Periodontal Res. 2019;54(6):681–9. https://doi.org/10.1111/jre.12677.

    Article  PubMed  Google Scholar 

  13. Mathews RJ, Sprakes MB, McDermott MF. NOD-like receptors and inflammation. Arthritis Res Ther. 2008;10(6):228. https://doi.org/10.1186/ar2525.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rathinam VAK, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell. 2016;165(4):792–800. https://doi.org/10.1016/j.cell.2016.03.046.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575(7784):669–73. https://doi.org/10.1038/s41586-019-1769-z.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang D, Zhang Y, Xu X, Wu J, Peng Y, Li J, et al. YAP promotes the activation of NLRP3 inflammasome via blocking K27-linked polyubiquitination of NLRP3. Nat Commun. 2021;12(1):2674. https://doi.org/10.1038/s41467-021-22987-3.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li H, Zhong X, Chen Z, Li W. Suppression of NLRP3 inflammasome improves alveolar bone defect healing in diabetic rats. J Orthop Surg Res. 2019;14(1):167. https://doi.org/10.1186/s13018-019-1215-9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Guan X, Guan Y, Shi C, Zhu X, He Y, Wei Z, et al. Estrogen deficiency aggravates apical periodontitis by regulating NLRP3/caspase-1/IL-1β axis. Am J Transl Res. 2020;12(2):660–71.

    PubMed  PubMed Central  Google Scholar 

  19. Kaur G, Bagam P, Pinkston R, Singh DP, Batra S. Cigarette smoke-induced inflammation: NLRP10-mediated mechanisms. Toxicology. 2018;398–399:52–67. https://doi.org/10.1016/j.tox.2018.02.010.

    Article  PubMed  Google Scholar 

  20. Damm A, Lautz K, Kufer TA. Roles of NLRP10 in innate and adaptive immunity. Microbes Infect. 2013;15(6–7):516–23. https://doi.org/10.1016/j.micinf.2013.03.008.

    Article  PubMed  Google Scholar 

  21. Murphy N, Grehan B, Lynch MA. Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromol Med. 2014;16(1):205–15. https://doi.org/10.1007/s12017-013-8274-6.

    Article  Google Scholar 

  22. Lautz K, Damm A, Menning M, Wenger J, Adam AC, Zigrino P, et al. NLRP10 enhances Shigella-induced pro-inflammatory responses. Cell Microbiol. 2012;14(10):1568–83. https://doi.org/10.1111/j.1462-5822.2012.01822.x.

    Article  PubMed  Google Scholar 

  23. Wang L, Li X, Song Y, Zhang L, Ye L, Zhou X, et al. NELL1 augments osteogenesis and inhibits inflammation of human periodontal ligament stem cells induced by BMP9. J Periodontol. 2022;93(7):977–87. https://doi.org/10.1002/JPER.20-0517.

    Article  PubMed  Google Scholar 

  24. Hiraiwa H, Sakai T, Mitsuyama H, Hamada T, Yamamoto R, Omachi T, et al. Inflammatory effect of advanced glycation end products on human meniscal cells from osteoarthritic knees. Inflamm Res. 2011;60(11):1039–48. https://doi.org/10.1007/s00011-011-0365-y.

    Article  PubMed  Google Scholar 

  25. Cheng A, Dong Y, Zhu F, Liu Y, Hou FF, Nie J. AGE-LDL activates toll like receptor 4 pathway and promotes inflammatory cytokines production in renal tubular epithelial cells. Int J Biol Sci. 2013;9(1):94–107. https://doi.org/10.7150/ijbs.5246.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li DX, Deng TZ, Lv J, Ke J. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts. Braz J Med Biol Res. 2014;47(12):1036–43. https://doi.org/10.1590/1414-431X20143996.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu W, Lu Y, Yue J, Lu W, Zhou W, Zhou X, et al. Occlusal trauma inhibits osteoblast differentiation and bone formation through IKK-NF-κB signaling. J Periodontol. 2020;91(5):683–92. https://doi.org/10.1002/JPER.18-0710.

    Article  PubMed  Google Scholar 

  28. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, et al. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab. 2018;28(3):337–52. https://doi.org/10.1016/j.cmet.2018.08.014.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR. A synthetic inhibitor of the mitogen-activated protein-kinase cascade. P Natl Acad Sci USA. 1995;92(17):7686–9. https://doi.org/10.1073/pnas.92.17.7686.

    Article  Google Scholar 

  30. Zhou Q, Ren X, Bischoff D, Weisgerber DW, Yamaguchi DT, Miller TA, et al. Nonmineralized and mineralized collagen scaffolds induce differential osteogenic signaling pathways in human mesenchymal stem cells. Adv Healthc Mater. 2017;6(23):1700641. https://doi.org/10.1002/adhm.201700641.

    Article  Google Scholar 

  31. Valdivieso ÁG, Dugour AV, Sotomayor V, Clauzure M, Figueroa JM, Santa-Coloma TA. N-acetyl cysteine reverts the proinflammatory state induced by cigarette smoke extract in lung Calu-3 cells. Redox Biol. 2018;16:294–302. https://doi.org/10.1016/j.redox.2018.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Spagnuolo G, D’Antò V, Cosentino C, Schmalz G, Schweikl H, Rengo S. Effect of N-acetyl-l-cysteine on ROS production and cell death caused by HEMA in human primary gingival fibroblasts. Biomaterials. 2006;27(9):1803–9. https://doi.org/10.1016/j.biomaterials.2005.10.022.

    Article  PubMed  Google Scholar 

  33. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89. https://doi.org/10.1038/s41577-019-0165-0.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Song H, Liu B, Huai W, Yu Z, Wang W, Zhao J, et al. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3. Nat Commun. 2016. https://doi.org/10.1038/ncomms13727.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Esposito D, Koliopoulos MG, Rittinger K. Structural determinants of TRIM protein function. Biochem Soc T. 2017;45(1):183–91. https://doi.org/10.1042/BST20160325.

    Article  Google Scholar 

  36. Graves DT, Ding Z, Yang Y. The impact of diabetes on periodontal diseases. Periodontol 2000. 2019;82(1):214–24. https://doi.org/10.1111/prd.12318.

    Article  Google Scholar 

  37. Akram Z, Alqahtani F, Alqahtani M, Al-Kheraif AA, Javed F. Levels of advanced glycation end products in gingival crevicular fluid of chronic periodontitis patients with and without type-2 diabetes mellitus. J Periodontol. 2019;91(3):396–402. https://doi.org/10.1002/JPER.19-0209.

    Article  PubMed  Google Scholar 

  38. Zizzi A, Tirabassi G, Aspriello SD, Piemontese M, Rubini C, Lucarini G. Gingival advanced glycation end-products in diabetes mellitus-associated chronic periodontitis: an immunohistochemical study. J Periodontal Res. 2013;48(3):293–301. https://doi.org/10.1111/jre.12007.

    Article  PubMed  Google Scholar 

  39. Chen F, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng Part B Rev. 2010;16(2):219–55. https://doi.org/10.1089/ten.teb.2009.0562.

    Article  PubMed  Google Scholar 

  40. Lu WL, Zhang L, Song DZ, Yi XW, Xu WZ, Ye L, et al. NLRP6 suppresses the inflammatory response of human periodontal ligament cells by inhibiting NF-κB and ERK signal pathways. Int Endod J. 2019;52(7):999–1009. https://doi.org/10.1111/iej.13091.

    Article  PubMed  Google Scholar 

  41. Zhang S, Liu Y, Wang X, An N, Ouyang X. STAT1/SOCS1/3 are involved in the Inflammation-Regulating effect of GAS6/AXL in periodontal ligament cells induced by porphyromonas gingivalis lipopolysaccharide in vitro. J Immunol Res. 2021;2021:9577695. https://doi.org/10.1155/2021/9577695.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zheng J, Chen S, Albiero ML, Vieira GHA, Wang J, Feng JQ, et al. Diabetes activates periodontal ligament fibroblasts via NF-κB in vivo. J Dent Res. 2018;97(5):580–8. https://doi.org/10.1177/0022034518755697.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Motta V, Soares F, Sun T, Philpott DJ. NOD-like receptors: versatile cytosolic sentinels. Physiol Rev. 2015;95(1):149–78. https://doi.org/10.1152/physrev.00009.2014.

    Article  PubMed  Google Scholar 

  44. Leemans JC, Kors L, Anders H, Florquin S. Pattern recognition receptors and the inflammasome in kidney disease. Nat Rev Nephrol. 2014;10(7):398–414. https://doi.org/10.1038/nrneph.2014.91.

    Article  PubMed  Google Scholar 

  45. Lim RR, Wieser ME, Ganga RR, Barathi VA, Lakshminarayanan R, Mohan RR, et al. NOD-like receptors in the eye: uncovering its role in diabetic retinopathy. Int J Mol Sci. 2020;21(3):899. https://doi.org/10.3390/ijms21030899.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Eisenbarth SC, Williams A, Colegio OR, Meng H, Strowig T, Rongvaux A, et al. NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature. 2012;484(7395):510–3. https://doi.org/10.1038/nature11012.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kong X, Yuan Z, Cheng J. The function of NOD-like receptors in central nervous system diseases. J Neurosci Res. 2017;95(8):1565–73. https://doi.org/10.1002/jnr.24004.

    Article  PubMed  Google Scholar 

  48. Jie YZLT. Post-translational regulation of inflammasomes. Cell Mol Immunol. 2017;14(1):65–79. https://doi.org/10.1038/cmi.2016.29.

    Article  Google Scholar 

  49. Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem. 2012;287(43):36617–22. https://doi.org/10.1074/jbc.M112.407130.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wu X, Lu M, Ding S, Zhong Q. Tripartite motif 31 alleviates IL-1ß secretion via promoting the ubiquitination of pyrin domain domains-containing protein 3 in human periodontal ligament fibroblasts. Odontology. 2020;108(3):424–32. https://doi.org/10.1007/s10266-020-00519-7.

    Article  PubMed  Google Scholar 

  51. Wang Y, Hasegawa M, Imamura R, Kinoshita T, Kondo C, Konaka K, et al. PYNOD, a novel Apaf-1/CED4-like protein is an inhibitor of ASC and caspase-1. Int Immunol. 2004;16(6):777–86. https://doi.org/10.1093/intimm/dxh081.

    Article  PubMed  Google Scholar 

  52. Li Z, Shui S, Han X, Yan L. NLRP10 ablation protects against ischemia/reperfusion-associated brain injury by suppression of neuroinflammation. Exp Cell Res. 2020;389(2):111912. https://doi.org/10.1016/j.yexcr.2020.111912.

    Article  PubMed  Google Scholar 

  53. Xu W, Lu Q, Qu M, Fan R, Leng S, Wang L, et al. Wnt4 regulates bone metabolism through IKK-NF-κB and ROCK signaling under occlusal traumatic periodontitis. J Periodontal Res. 2022;57(3):461–9. https://doi.org/10.1111/jre.12975.

    Article  PubMed  Google Scholar 

  54. Mirza N, Sowa AS, Lautz K, Kufer TA. NLRP10 affects the stability of abin-1 to control inflammatory responses. J Immunol. 2019;202(1):218–27. https://doi.org/10.4049/jimmunol.1800334.

    Article  PubMed  Google Scholar 

  55. Lee S, Choi B. Involvement of NLRP10 in IL-1α induction of oral epithelial cells by periodontal pathogens. Innate Immun-London. 2017;23(7):569–77. https://doi.org/10.1177/1753425917722610.

    Article  Google Scholar 

  56. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90. https://doi.org/10.1038/35008121.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

This work was supported by National Natural Science Foundation of China. (No. 82170946[L.Z] and No. 81970936 [D.M.H]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Zhang.

Ethics declarations

Conflict of interest

The authors deny any conflicts of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Song, Y., Xu, J. et al. NLRP10 promotes AGEs-induced NLRP1 and NLRP3 inflammasome activation via ROS/MAPK/NF-κB signaling in human periodontal ligament cells. Odontology 112, 100–111 (2024). https://doi.org/10.1007/s10266-023-00813-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00813-0

Keywords

Navigation