Skip to main content

Advertisement

Log in

Physicochemical, mechanical and biological properties of nano-calcium silicate-based cements: a systematic review

  • Review Article
  • Published:
Odontology Aims and scope Submit manuscript

A Correction to this article was published on 05 May 2023

This article has been updated

Abstract

This systematic review evaluated the effects of nano-sized cement particles on the properties of calcium silicate-based cements (CSCs). Using defined keywords, a literature search was conducted to identify studies that investigated properties of nano-calcium silicate-based cements (NCSCs). A total of 17 studies fulfilled the inclusion criteria. Results indicated that NCSC formulations have favourable physical (setting time, pH and solubility), mechanical (push out bond strength, compressive strength and indentation hardness) and biological (bone regeneration and foreign body reaction) properties compared with commonly used CSCs. However, the characterization and verification for the nano-particle size of NCSCs were deficient in some studies. Furthermore, the nanosizing was not limited to the cement particles and a number of additives were present. In conclusion, the evidence available for the properties of CSC particles in the nano-range is deficient—such properties could be a result of additives which may have enhanced the properties of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in tables 1-3 in addition to the supplementary material available online at https://doi.org/10.1007/s10266-023-00786-0.

Change history

References

  1. Torabinejad M, White DJ. Tooth filling material and method of use, US Patent: 5769638. 1995.

  2. Torabinejad M, White DJ. Tooth filling material and method of use, US Patent: 5415547. 1993.

  3. Kim S, Kratchman S. Modern endodontic surgery concepts and practice: a review. J Endod. 2006;32(7):601–23.

    Article  PubMed  Google Scholar 

  4. Main C, Mirzayan N, Shabahang S, Torabinejad M. Repair of root perforations using mineral trioxide aggregate: a long-term study. J Endod. 2004;30(2):80–3.

    Article  PubMed  Google Scholar 

  5. Silveira FF, Nunes E, Soares JA, Ferreira CL, Rotstein I. Double ‘pink tooth’associated with extensive internal root resorption after orthodontic treatment: a case report. Dent Traumatol. 2009;25(3):e43–7.

    Article  PubMed  Google Scholar 

  6. Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod. 1999;25(3):197–205.

    Article  PubMed  Google Scholar 

  7. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review–Part III: clinical applications, drawbacks, and mechanism of action. J Endod. 2010;36(3):400–13.

    Article  PubMed  Google Scholar 

  8. Dammaschke T, Gerth HU, Zuchner H, Schafer E. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater. 2005;21(8):731–8.

    Article  PubMed  Google Scholar 

  9. Islam I, Chng HK, Yap AU. X-ray diffraction analysis of mineral trioxide aggregate and Portland cement. Int Endod J. 2006;39(3):220–5.

    Article  PubMed  Google Scholar 

  10. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod. 1995;21(7):349–53.

    Article  PubMed  Google Scholar 

  11. Saghiri MA, Asgar K, Lotfi M, Garcia-Godoy F. Nanomodification of mineral trioxide aggregate for enhanced physiochemical properties. Int Endod Journal. 2012;45(11):979–88.

    Article  Google Scholar 

  12. Fridland M, Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J Endod. 2003;29(12):814–7.

    Article  PubMed  Google Scholar 

  13. Ertas H, Kucukyilmaz E, Ok E, Uysal B. Push-out bond strength of different mineral trioxide aggregates. Eur J Dent. 2014;8(3):348–52.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Camilleri J, Pitt Ford TR. Mineral trioxide aggregate: a review of the constituents and biological properties of the material. Int Endod J. 2006;39(10):747–54.

    Article  PubMed  Google Scholar 

  15. Holland R, Souza V, Nery MJ, Faraco Junior IM, Bernabe PF, Otoboni Filho JA, Dezan JE. Reaction of rat connective tissue to implanted dentin tubes filled with a white mineral trioxide aggregate. Braz Dent J. 2002;13(1):23–6.

    PubMed  Google Scholar 

  16. Parirokh M, Asgary S, Eghbal MJ, Stowe S, Eslam B, Eskandarizade A, Shabahang SA. comparative study of white and grey mineral trioxide aggregate as pulp capping agents in dog’s teeth. Dent Traumatol. 2005;21(3):150–4.

    Article  PubMed  Google Scholar 

  17. Hilton TJ, Ferracane JL, Mancl L. Comparison of CaOH with MTA for direct pulp capping: a PBRN randomized clinical trial. J Dent Res. 2013;92(7 suppl):16S-22S.

    Article  PubMed  Google Scholar 

  18. Torabinejad M, Parirokh M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview–part II: other clinical applications and complications. Int Endod J. 2018;51(3):284–317.

    Article  PubMed  Google Scholar 

  19. Parirokh M, Torabinejad M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J. 2018;51(2):177–205.

    Article  PubMed  Google Scholar 

  20. Camilleri J. Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. J Endod. 2014;40(3):436–40.

    Article  PubMed  Google Scholar 

  21. Glickman GN, Koch KA. 21st-century endodontics. J Am Dent Assoc. 2000;131(Suppl):39S-46S.

    Article  PubMed  Google Scholar 

  22. Saghiri MA, Godoy FG, Gutmann JL, Lotfi M, Asatourian A, Sheibani N, Elyasi M. The effect of pH on solubility of nano-modified endodontic cements. J Conserv Dent. 2014;17(1):13–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ghoddusi J, Forghani M, Parisay I. New approaches in vital pulp therapy in permanent teeth. Iran Endod J. 2014;9(1):15–22.

    PubMed  Google Scholar 

  24. Duarte MAH, Marciano MA, Vivan RR, Tanomaru Filho M, Tanomaru JMG, Camilleri J. Tricalcium silicate-based cements: properties and modifications. Braz Oral Res. 2018;32(suppl 1):e70.

    Article  PubMed  Google Scholar 

  25. Ahmed HMA, Luddin N, Kannan TP, Mokhtar KI, Ahmad A. Calcium chloride dihydrate affects the biological properties of white mineral trioxide aggregate on dental pulp stem cells: an in vitro study. Saudi Endod J. 2018;8(1):25–33.

    Article  Google Scholar 

  26. Ber BS, Hatton JF, Stewart GP. Chemical modification of proroot mta to improve handling characteristics and decrease setting time. J Endod. 2007;33(10):1231–4.

    Article  PubMed  Google Scholar 

  27. Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod. 2006;32(6):569–72.

    Article  PubMed  Google Scholar 

  28. Jafarnia B, Jiang J, He J, Wang YH, Safavi KE, Zhu Q. Evaluation of cytotoxicity of MTA employing various additives. Oral Surg Oral Med Oral Pathol Oral Radiol. 2009;107(5):739–44.

    Article  Google Scholar 

  29. International Organization for Standardization, 2017. ISO/TR 10993-22 Biological evaluation of medical devices–Part 22: Guidance on nanomaterials.

  30. Effendi MC, Bachtiar BM, Bachtiar EW, Herda E. The effect of nanoparticle mineral trioxide (NMT) on the proliferation and differentiation of stem cells human exfoliated deciduous to odontoblasts. J Int Dent Med Res. 2015;8(2):68–76.

    Google Scholar 

  31. Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L. Application of dental nanomaterials: potential toxicity to the central nervous system. Int J Nanomedicine. 2015;10:3547–65.

    PubMed  PubMed Central  Google Scholar 

  32. Raorane DV, Chaughule RS, Pednekar SR, Lokur A. Experimental synthesis of size-controlled TiO2 nanofillers and their possible use as composites in restorative dentistry. Saudi Dental J. 2019;31(2):194–203.

    Article  Google Scholar 

  33. Tuteja A, Duxbury PM, Mackay ME. Multifunctional nanocomposites with reduced viscosity. Macromolecules. 2007;40(26):9427–34.

    Article  Google Scholar 

  34. Tessema A, Zhao D, Moll J, Xu S, Yang R, Li C, Kumar SK, Kidane A. Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. Polym Test. 2017;57:101–6.

    Article  Google Scholar 

  35. Guimarães BM, Prati C, Duarte MA, Bramante CM, Gandolfi MG. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem. J Appl Oral Sci 2018;26.

  36. Kaur M, Singh H, Dhillon JS, Batra M, Saini M. MTA versus biodentine: review of literature with a comparative analysis. J Clin Diagn Res. 2017;11(8):ZG01-05.

    PubMed  PubMed Central  Google Scholar 

  37. Shokouhinejad N, Nekoofar MH, Pirmoazen S, Shamshiri AR, Dummer PMH. Evaluation and comparison of occurrence of tooth discoloration after the application of various calcium silicate–based cements: an ex vivo study. J Endodo. 2016;42(1):140–4.

    Article  Google Scholar 

  38. Chang SW. Chemical composition and porosity characteristics of various calcium silicate-based endodontic cements. Bioinorg Chem Appl 2018;1–6.

  39. Saghiri M, Lotfi M, Aghili H. “Dental Cement Composition,” US Patent 2012/0012030 A1. 2012.

  40. Saghiri M, Lotfi M, Aghili H. “Dental Cement Composition,” US Patent 8668770B2. 2014.

  41. Mishra VK, Mishra SK, Jha A. Application of nanomaterials in mesenchymal stem cell engineering. Dig J Nanomater Biostructures. 2008;3(4):203–8.

    Google Scholar 

  42. Saghiri MA, Asatourian A, Orangi J, Lotfi M, Soukup JW, Garcia-Godoy F, Sheibani N. Effect of particle size on calcium release and elevation of pH of endodontic cements. Dent Traumatol. 2015;31(3):196–201.

    Article  PubMed  Google Scholar 

  43. Kishen A. Nanotechnology in endodontics: current and potential clinical applications. Switzerland: Springer; 2015.

    Book  Google Scholar 

  44. Raura N, Garg A, Arora A, Roma M. Nanoparticle technology and its implications in endodontics: a review. Biomater Res. 2020;24(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hrobjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, McKenzie JE. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372: n160.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lasserson TJ, Thomas J, Higgins JPT. Chapter 1: Starting a review. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane handbook for systematic reviews of interventions. 2nd ed. Chichester: Wiley; 2019. p. 3–12.

    Google Scholar 

  47. McHugh ML. Interrater reliability: the kappa statistic. Biochemia medica. 2012;22:276–82.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Revmnan 5.4 Review Manager software, The Cochrane Collaboration 2020, London. https://training.cochrane.org/online-learning/core-software/revman.

  49. Deeks JJ, Higgins JPT, Altman DG (editors). Chapter 10: Analysing data and undertaking meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from www.training.cochrane.org/handbook.

  50. WebPlotDigitizer software (https://automeris.io/WebPlotDigitizer)

  51. Saghiri MA, Garcia-Godoy F, Gutmann JL, Lotfi M, Asatourian A, Ahmadi H. Push-out bond strength of a nano-modified mineral trioxide aggregate. Dent Traumat. 2012;29(4):323–7.

    Article  Google Scholar 

  52. Radwan MM, Abd El-Hamid HK, Nagi SM. Synthesis, properties and hydration characteristics of novel nano-size mineral trioxide and tetracalcium phosphate for dental applications. Orient J Chem. 2016;32(5):2459–72.

    Article  Google Scholar 

  53. Abd El-Hamid HK, Abo-Almaged HH, Radwan MM. Synthesis, characterization and antimicrobial activity of nano-crystalline tricalcium silicate bio-cement. J App Pharm Sci. 2017;7(10):001–8.

    Google Scholar 

  54. Saghiri MA, Garcia-Godoy F, Asatourian A, Lotfi M, Banava S, Khezri-Boukani K. Effect of pH on compressive strength of some modification of mineral trioxide aggregate. Med Oral Patol Oral Cir Bucal. 2013;18(4): e714.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Saghiri MA, Asatourian A, Garcia-Godoy F, Gutmann JL, Sheibani N. The impact of thermocycling process on the dislodgement force of different endodontic cements. Biomed Res Int. 2013;2013: 317185.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Saghiri MA, Nazari A, Garcia-Godoy F, Asatourian A, Malekzadeh M, Elyasi M. Mechanical response of dental cements as determined by nanoindentation and scanning electron microscopy. Microsc Microanal. 2013;19(6):1458–64.

    Article  PubMed  Google Scholar 

  57. Saghiri MA, Gutmann JL, Orangi J, Asatourian A, Sheibani N. Radiopacifier particle size impacts the physical properties of tricalcium silicate-based cements. J Endod. 2015;41(2):225–30.

    Article  PubMed  Google Scholar 

  58. Saghiri MA, Asatourian A, Orangi J, Soukup JW, Gutmann JL, Garcia-Godoy F, Sheibani N. The influence of antibiotics on the physical properties of endodontic cements. G Ital Endod. 2016;30(2):89–95.

    Article  Google Scholar 

  59. Nashaat YM, Roshdy NN. Comparative evaluation of the push-out bond strength of nano-formulations of MTA and Portland cement. Egypt Dent J (Conserv Dent Endod). 2020;66(4 July):2807–14.

    Article  Google Scholar 

  60. Nagi SM, Omar N, Salem HN, Aly Y. Effect of different surface treatment protocols on the shear bond strength of perforation repair materials to resin composite. J Adhes Sci Tech. 2020;34(4):417–26.

    Article  Google Scholar 

  61. Saghiri MA, Orangi J, Tanideh N, Janghorban K, Sheibani N. Effect of endodontic cement on bone mineral density using serial dual-energy x-ray absorptiometry. J Endod. 2014;40(5):648–51.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Saghiri MA, Orangi J, Tanideh N, Asatourian A, Janghorban K, Garcia-Godoy F, Sheibani N. Repair of bone defect by nano-modified white mineral trioxide aggregates in rabbit: a histopathological study. Med Oral Patol Oral Cir Bucal. 2015;20(5):e525–31.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Saghiri MA, Asatourian A, Nguyen EH, Wang S, Sheibani N. Hydrogel arrays and choroidal neovascularization models for evaluation of angiogenic activity of vital pulp therapy biomaterials. J Endod. 2018;44(5):773–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Stanić T, Pavlović V, Jokanović V, Živković-Sandić M, Živković S. Solubility and porosity of new nanostructured calcium silicate cement. Stomatoloski glasnik Srbije. 2014;61(4):190–5.

    Article  Google Scholar 

  65. Akbari M, Zead SM, Nategh B, Rouhani A. Effect of nano silica on setting time and physical properties of mineral trioxide aggregate. J Endod. 2013;39(11):1448–51.

    Article  PubMed  Google Scholar 

  66. ProRoot MTA, Dentsply Sirona. https://www.dentsplysirona.com/en-us/shop/BP-304182/proroot-mta-root-repair-delivery-system.html.

  67. Saghiri MA, Orangi J, Asatourian A, Gutmann JL, Garcia-Godoy F, Lotfi M, Sheibani N. Calcium silicate-based cements and functional impacts of various constituents. Dent Mater J. 2017;36(1):8–18.

    Article  PubMed  Google Scholar 

  68. Liguori B, Aprea P, Gennaro BD, Iucolano F, Colella A, Caputo D. Pozzolanic activity of zeolites: the role of Si/Al ratio. Materials. 2019;12(24):4231.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Massazza F. Properties and applications of natural pozzolanas. In: Bensted J, Barnes P, editors. Structure and performance of cements. 2nd ed. London: Spon Press; 2001. p. 326–52.

    Google Scholar 

  70. Roberts HW, Toth JM, Berzins DW, Charlton DG. Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent mater. 2008;24(4):149–64.

    Article  PubMed  Google Scholar 

  71. Tennis PD, Jennings HM. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cem Concr Res. 2000;30(6):855–63.

    Article  Google Scholar 

  72. Korkmaz Y, Gurgan S, Firat E, Nathanson D. Effect of adhesives and thermocycling on the shear bond strength of a nano-composite to coronal and root dentin. Oper Dent. 2010;35(5):522–9.

    Article  PubMed  Google Scholar 

  73. Lothenbach B, Matschei T, Möschner G, Glasser FP. Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem Concr Res. 2008;38(1):1–18.

    Article  Google Scholar 

  74. Camilleri J. The physical properties of accelerated Portland cement for endodontic use. Int Endod J. 2008;41(2):151–7.

    PubMed  Google Scholar 

  75. Coomaraswamy KS, Lumley PJ, Hofmann MP. Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement-based (MTA-like) system. J Endod. 2007;33(3):295–8.

    Article  PubMed  Google Scholar 

  76. Snellings R, Mertens G, Cizer Ö, Elsen J. Early age hydration and pozzolanic reaction in natural zeolite blended cements: reaction kinetics and products by in situ synchrotron X-ray powder diffraction. Cem Concr Res. 2010;40(12):1704–13.

    Article  Google Scholar 

  77. Cakicioglu-Ozcan F, Becer M. Effect of the acid type on the natural zeolite structure. J Turk Chem Soc Sect B: Chem Eng. 2(2):69–74.

  78. Saghiri MA, Lotfi M, Joupari MD, Aeinehchi M, Saghiri AM. Effects of storage temperature on surface hardness, microstructure, and phase formation of white mineral trioxide aggregate. J Endod. 2010;36(8):1414–8.

    Article  PubMed  Google Scholar 

  79. Janotka I, Dzivák M. Properties and utilization of zeolite-blended Portland cements. Clay Clay Miner. 2003;51(6):616–24.

    Article  Google Scholar 

  80. MTA Angelus, Odontológicos Angelus. https://www.angelusdental.com/products/details/id/3.

  81. Peng S, Liu XS, Wang T, Li Z, Zhou G, Luk KD, Guo XE, Lu WW. In vivo anabolic effect of strontium on trabecular bone was associated with increased osteoblastogenesis of bone marrow stromal cells. J Orthop Res. 2010;28(9):1208–14.

    Article  PubMed  Google Scholar 

  82. Aiqin W, Chengzhi Z, Ningsheng ZN. The theoretic analysis of the influence of the particle size distribution of cement system on the property of cement. Cem Concr Res. 1999;29(11):1721–6.

    Article  Google Scholar 

  83. Koh ET, McDonald F, Pitt Ford TR, Torabinejad M. Cellular response to mineral trioxide aggregate. J Endod. 1998;24(8):543–7.

    Article  PubMed  Google Scholar 

  84. Chen K, Pittman RN, Popel AS. Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective. Antioxid Redox Signal. 2008;10(7):1185–98.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wheatley PS, Butler AR, Crane MS, Fox S, Xiao B, Rossi AG, Megson IL, Morris RE. NO-releasing zeolites and their antithrombotic properties. J Am Chem Soc. 2006;128(2):502–9.

    Article  PubMed  Google Scholar 

  86. Ziche M, Morbidelli L. Nitric oxide and angiogenesis. J Neurooncol. 2000;50(1–2):139–48.

    Article  PubMed  Google Scholar 

  87. Sonoda S, Mei YF, Atsuta I, Danjo A, Yamaza H, Hama S, Nishida K, Tang R, Kyumoto-Nakamura Y, Uehara N, Kukita T. Exogenous nitric oxide stimulates the odontogenic differentiation of rat dental pulp stem cells. Sci rep. 2018;8(1):1–11.

    Article  Google Scholar 

  88. Ullah M, Ali M, Hamid SBA. Surfactant-assisted ball milling: a novel route to novel materials with controlled nanostructure—a review. Rev Adv Mater Sci. 2014;37:1–14.

    Google Scholar 

  89. Phan HT, Haes AJ. What does nanoparticle stability mean? J Phys Chem. 2019;123(27):16495–507.

    Google Scholar 

  90. Lo Giudice G, Cutroneo G, Centofanti A, Artemisia A, Bramanti E, Militi A, Rizzo G, Favaloro A, Irrera A, Lo Giudice R, Cicciù M. Dentin morphology of root canal surface: a quantitative evaluation based on a scanning electronic microscopy study. BioMed Res Inter. 2015;2015:1–7.

    Article  Google Scholar 

  91. Fan B, Fan W, Wu D, Tay FR, Ma T, Wu Y. Effects of adsorbed and templated nanosilver in mesoporous calcium-silicate nanoparticles on inhibition of bacteria colonization of dentin. Int J Nanomed. 2014;9:5217.

    Article  Google Scholar 

  92. Eitel K, Bryant G, Schöpe HJ. A Hitchhiker’s guide to particle sizing techniques. Langmuir. 2020;36(5):10307–20.

    Article  PubMed  Google Scholar 

  93. Moinzadeh AT, Jongsma LA, Wesselink PR. Considerations about the use of the “push-out” test in Endodontic research. Int Endod J. 2015;48(5):498–500.

    Article  PubMed  Google Scholar 

  94. Chen WP, Chen YY, Huang SH, Lin CP. Limitations of push-out test in bond strength measurement. J Endod. 2013;39(2):283–7.

    Article  PubMed  Google Scholar 

  95. Neelakantan P, Ahmed HM, Wong MCM, Matinlinna JP, Cheung GSP. Effect of root canal irrigation protocols on the dislocation resistance of mineral trioxide aggregate-based materials: a systematic review of laboratory studies. Int Endod J. 2018;51(8):847–61.

    Article  PubMed  Google Scholar 

  96. Ahmed HM, Luddin N, Kannan TP, Mokhtar KI, Ahmad A. Cell attachment properties of Portland cement-based endodontic materials: biological and methodological considerations. J Endod. 2014;40(10):1517–23.

    Article  PubMed  Google Scholar 

  97. Ahmed HM, Luddin N, Kannan TP, Mokhtar KI, Ahmad A. Chemical analysis and biological properties of two different formulations of white portland cements. Scanning. 2016;38(4):303–16.

    Article  PubMed  Google Scholar 

  98. Rauscher H, Roebben G, Mech A, Gibson N, Kestens V, Linsinger TPJ, Sintes JR. An overview of concepts and terms used in the European Commission’s definition of nanomaterial. Publications Office of the European Union 2019.

Download references

Acknowledgements

This study was supported by Fundamental Research Grant Scheme (FRGS), grant no. FP047-2018A, Ministry of Higher Education, Malaysia, and Research University (RU) grant no. RF003E-2018, Faculty of Dentistry, University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hany Mohamed Aly Ahmed.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Supplementary file2 (DOCX 17 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, R., Elnawawy, H.M., Kutty, M.G. et al. Physicochemical, mechanical and biological properties of nano-calcium silicate-based cements: a systematic review. Odontology 111, 759–776 (2023). https://doi.org/10.1007/s10266-023-00786-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00786-0

Keywords

Navigation