Skip to main content

Advertisement

Log in

Effect of epinephrine on the distribution of ropivacaine and lidocaine using radioactive isotopes in rat maxilla and pulp

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

We compared the effect of epinephrine on the distribution of ropivacaine and lidocaine by using radioactive isotopes in rat maxilla and pulp. Twenty microliters of 3H-labeled 0.5% ropivacaine, 14C-labeled 2.0% lidocaine, or epinephrine-supplemented isotopes were injected into the maxilla. The radioactivity was measured and autoradiography was obtained. Epinephrine led to increase in amounts of both anesthetics in the maxilla and pulp; however, each anesthetic did so in a different manner. Addition of epinephrine to lidocaine decreased radioactivity in maxilla and pulp with time. Conversely, when ropivacaine with epinephrine was administered, radioactivity did not change until 20 min in the maxilla and reached its peak at 20 min in the pulp. Autoradiography of lidocaine faded with time even with epinephrine use; however, with ropivacaine, higher accumulation image was observed after 20 min compared to that after 2 min. When epinephrine was combined with lidocaine, the amount of lidocaine in maxilla and pulp decreased with time, similar to when lidocaine was used alone. Conversely, when ropivacaine-epinephrine combination was administered, the amount of ropivacaine remained unchanged for 20 min in the maxilla and reached its peak at 20 min in the dental pulp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scott DB, Lee A, Fagan D, Bowler GMR, Bloomfield P, Lundh R. Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg. 1989;69:563–9.

    PubMed  Google Scholar 

  2. Mcclure JH. Ropivacaine. Br J Anaesth. 1996;76:300–7. https://doi.org/10.1093/bja/76.2.300.

    Article  PubMed  Google Scholar 

  3. Ernberg M, Kopp S. Ropivacaine for dental anesthesia. A dose-finding study. Oral Maxillofac Surg. 2002;60:1004–10. https://doi.org/10.1053/joms.2002.34409.

    Article  Google Scholar 

  4. El-Sharrawy E, Yagiela JA. Anesthetic efficacy of different ropivacaine concentrations for inferior alveolar nerve block. Anesth Prog. 2006;53:3–7.

    Article  Google Scholar 

  5. Espitalier F, Remerand F, Dubost AF, Laffon M, Fusciardi J, Goga D. Mandibular nerve block can improve intraoperative inferior alveolar nerve visualization during sagittal split mandibular osteotomy. J Craniomaxillofac Surg. 2011;39:164–8. https://doi.org/10.1016/j.jcms.2010.04.015.

    Article  PubMed  Google Scholar 

  6. Plantevin F, Pascal J, Morel J, Roussier M, Charier D, Prades JM, Auboyer C, Molliex S. Effect of mandibular nerve block on postoperative analgesia in patients undergoing oropharyngeal carcinoma surgery under general anaesthesia. Br J Anaesth. 2007;99:708–12. https://doi.org/10.1093/bja/aem242.

    Article  PubMed  Google Scholar 

  7. Budharapu A, Sinha R, Uppada UK, Subramanya Kumar AVSS. Ropivacaine: a new local anaesthetic agent in maxillofacialsurgery. Br J Oral Maxillofac Surg. 2015;53:451–4. https://doi.org/10.1016/j.bjoms.2015.02.021.

    Article  PubMed  Google Scholar 

  8. Krzeminski TF, Gilowski L, Wiench R, Kondzielnik P, Sielanczyk A. Comparison of ropivacaine and articaine with epinephrine for infiltration anaesthesia in dentistry—a randomized study. Int Endod J. 2011;44:746–51. https://doi.org/10.1111/j.1365-2591.2011.01881.x.

    Article  PubMed  Google Scholar 

  9. Kennedy M, Reader A, Beck M, Weaver J. Anesthetic efficacy of ropivacaine in maxillary anterior infiltration. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91:406–12. https://doi.org/10.1067/moe.2001.114000.

    Article  PubMed  Google Scholar 

  10. Brkovic BMB, Zlatkovic M, Jovanovic D, Stojic D. Maxillary infiltration anaesthesia by ropivacaine for upper third molar surgery. Int J Oral Maxillofac Surg. 2010;39:36–41. https://doi.org/10.1016/j.ijom.2009.11.009.

    Article  PubMed  Google Scholar 

  11. Meechan JG. A comparison of ropivacaine and lidocaine with epinephrine for intraligamentary anesthesia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93:469–73. https://doi.org/10.1067/moe.2002.121390.

    Article  PubMed  Google Scholar 

  12. Goto T, Mamiya H, Ichinohe T, Kaneko Y. Localization of 14C-labeled 2% lidocaine hydrochloride after intraosseous anesthesia in the rabbit. JOE. 2011;37:1376–9. https://doi.org/10.1016/j.joen.2011.05.039.

    Article  PubMed  Google Scholar 

  13. Yamazaki T, Mamiya H, Ichinohe T, Kaneko Y. Distribution of lidocaine in alveolar tissues in rabbits. J Hard Tissue Biol. 2009;18:95–100.

    Article  Google Scholar 

  14. Kimi H, Yamashiro M, Hashimoto S. The local pharmacokinetics of 3H-ropivacaine and 14C-lidocaine after maxillary infiltration anesthesia in rats. Anesth Prog. 2012;59:75–81. https://doi.org/10.2344/11-14.1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Akimoto T, Hashimoto S, Sunada K. Dexmedetomidine (12.5 μg/mL) improves tissue distribution, anesthetic action, and hemodynamic effects of lidocaine after palatal infiltration in rats. Odontology. 2016;104:390–6. https://doi.org/10.1007/s10266-015-0221-6.

    Article  PubMed  Google Scholar 

  16. Kopacz DJ, Carpenter RL, Mackey DC. Effect of ropivacaine on cutaneous capillary blood f l ow in pigs. Anesthesiology. 1989;71:69–74. https://doi.org/10.1097/00000542-198907000-00013.

    Article  PubMed  Google Scholar 

  17. Nakamura K, Toda H, Kakuyama M, Nishiwada M, Yamamoto M, Hatano Y, Mori K. Direct vascular effect of ropivacaine in femoral artery and vein of the dog. Acta Anaesthesiol Scand. 1993;37:269–73. https://doi.org/10.1111/j.1399-6576.1993.tb03714.x.

    Article  PubMed  Google Scholar 

  18. Govêia CS, Magalhães E. Ropivacaine in peribulbar anesthesia—vasoconstrictive properties. Rev Bras Anestesiol. 2010;60:495–512.

    PubMed  Google Scholar 

  19. Timponi CF, Oliveira NE, Arruda RMP, Meyrelles SS, Vasquez EC. Effects of the local anaesthetic ropivacaine on vascular reactivity in the mouse perfused mesenteric arteries. Basic Clin Pharmacol Toxicol. 2006;98:518–20.

    Article  Google Scholar 

  20. Joo DT, Wong GK. Drug interactions: lipoxygenase inhibitors interfere with ropivacaine-induced vasoconstriction. Can J Anesth. 2009;56:279–83. https://doi.org/10.1007/s12630-009-9062-5.

    Article  PubMed  Google Scholar 

  21. Ueki S, Iwai-Liao Y, Han KS, Higashi Y. Histological study of the circulatory system of human dental pulp from individuals under local anesthesia and electro-acupuncture. Okajimas Folia Anat Jpn. 1995;71:335–44. https://doi.org/10.2535/ofaj1936.71.6_335.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank to Dr. Shuichi Hashimoto for his support in this study. Department resources were used to fund this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhisa Sunada.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, K., Sunada, K. Effect of epinephrine on the distribution of ropivacaine and lidocaine using radioactive isotopes in rat maxilla and pulp. Odontology 109, 168–173 (2021). https://doi.org/10.1007/s10266-020-00536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-020-00536-6

Keywords

Navigation