Skip to main content

Advertisement

Log in

Surface characterization and bonding properties of milled polyetheretherketone dental posts

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

PEEK has been used in many dental applications except intra-radicular post. The aim of this study is to test polyetheretherketone (PEEK) as a dental post material through tensile bond strength (TBS) and surface roughness (SR), and to compare it with glass-fiber and cast-metal posts. Thus, 60 human maxillary central incisors with a single root were endodontically treated and divided into three groups (n = 20) according to the type of post (Group P: PEEK, Group F: Glass-fiber, Group M: Cast-metal). Appropriate surface treatment was employed for each group and SR was determined by a three-dimensional non-contact profilometer before cementation. All posts were luted to the canal dentin using self-etch resin cement (Panavia F2.0). Pull-out test was performed on a universal testing machine at a speed of 0.5 mm/min crosshead speed until failure, and TBS were calculated. One-way ANOVA, Tukey’s HSD, and Pearson chi-squared tests were performed for statistical analyses (α = 0.05). According to the results, group F demonstrated the highest SR (2.93 ± 0.18 µm) and lowest TBS values (10.05 ± 0.53 MPa), while group P exhibited lowest SR (1.37 ± 0.11 µm) and highest TBS values (14.33 ± 0.58 MPa) (p < 0.001). No significant differences in failure modes were identified among groups, mostly adhesive (p = 0.243). As conclusion, PEEK may be a reliable and contemporary option for dental post systems when used with appropriate surface treatment and luting agent. This high-performance polymer may be a novel candidate as a contemporary dental post system due to its superior mechanical, chemical, thermal, and esthetical properties with low risk of fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Manfredi M, Figini L, Gagliani M, Lodi G. Single versus multiple visits for endodontic treatment of permanent teeth. Cochrane Database Syst Rev. 2016;12:CD005296.

  2. Dietschi D, Duc O, Krejci I, Sadan A. Biomechanical considerations for the restoration of endodontically treated teeth: a systematic review of the literature, part II (evaluation of fatigue behavior, interfaces, and in vivo studies). Quintessence Int. 2008;39:117–29.

    Google Scholar 

  3. Dietschi D, Duc O, Krejci I, Sadan A. Biomechanical considerations for the restoration of endodontically treated teeth: a systematic review of the literature-Part 1. Composition and micro- and macrostructure alterations. Quintessence Int. 2007;38:733–43.

    PubMed  Google Scholar 

  4. Saker S, Özcan M. Retentive strength of fiber-reinforced composite posts with composite resin cores: effect of remaining coronal structure and root canal dentin conditioning protocols. J Prosthet Dent. 2015;114:856–61.

    PubMed  Google Scholar 

  5. Ferrari M, Vichi A, Grandini S, Goracci C. Efficacy of a self-curing adhesive-resin cement system on luting glass-fiber posts into root canals: an SEM investigation. Int J Prosthodont. 2001;14:543–9.

    PubMed  Google Scholar 

  6. Kimmel SS. Restoration and reinforcement of endodontically treated teeth with a polyethylene ribbon and prefabricated fiberglass post. Gen Dent. 2000;48:700–6.

    PubMed  Google Scholar 

  7. Durmuş G, Oyar P. Effects of post core materials on stress distribution in the restoration of mandibular second premolars: a finite element analysis. J Prosthet Dent. 2014;112:547–54.

    PubMed  Google Scholar 

  8. Yang A, Lamichhane A, Xu C. Remaining coronal dentin and risk of fiber-reinforced composite post-core restoration failure: a meta-analysis. Int J Prosthodont. 2015;28:258–64.

    PubMed  Google Scholar 

  9. Ukon S, Moroi H, Okimoto K, et al. Influence of different elastic moduli of dowel and core on stress distribution in root. Dent Mater J. 2000;19:50–64.

    PubMed  Google Scholar 

  10. Madfa AA, Kadir MR, Kashani J, et al. Stress distributions in maxillary central incisors restored with various types of post materials and designs. Med Eng Phys. 2014;36:962–7.

    PubMed  Google Scholar 

  11. Madfa AA, Al-Hamzi MA, Al-Sanabani FA, et al. 3D FEA of cemented glass fiber and cast posts with various dental cements in a maxillary central incisor. Springerplus. 2015;4:598.

    PubMed  PubMed Central  Google Scholar 

  12. Drummond JL, Bapna MS. Static and cyclic loading of fiber reinforced dental resin. Dent Mater. 2003;19:226–33.

    PubMed  Google Scholar 

  13. Tay FR, Pashley DH. Monoblocks in root canals: a hypothetical or a tangible goal. J Endod. 2007;33:391–8.

    PubMed  PubMed Central  Google Scholar 

  14. Fredriksson M, Astbäck J, Pamenius M, Arvidson K. A retrospective study of 236 patients with teeth restored by carbon fiber-reinforced epoxy resin posts. J Prosthet Dent. 1998;80:151–7.

    PubMed  Google Scholar 

  15. Dikbas I, Tanalp J. An overview of clinical studies on fiber post systems. Sci World J. 2013;2013:171380.

    Google Scholar 

  16. Komada W, Miura H, Okada D, Yoshida K. Study on the fracture strength of root reconstructed with post and core: alveolar bone resorbed case. Dent Mater J. 2006;25:177–82.

    PubMed  Google Scholar 

  17. Goracci C, Ferrari M. Current perspectives on post systems: a literature review. Aust Dent J. 2011;56:77–83.

    PubMed  Google Scholar 

  18. Santos-Filho PC, Veríssimo C, Soares PV, et al. Influence of ferrule, post system, and length on biomechanical behavior of endodontically treated anterior teeth. J Endod. 2014;40:119–23.

    PubMed  Google Scholar 

  19. Schmitter M, Rammelsberg P, Gabbert O, Ohlmann B. Influence of clinical baseline findings on the survival of 2 post systems: a randomized clinical trial. Int J Prosthodont. 2007;20:173–8.

    PubMed  Google Scholar 

  20. Naumann M, Blankenstein F, Dietrich T. Survival of glass fibre reinforced composite post restorations after 2 years-an observational clinical study. J Dent. 2005;33:305–12.

    PubMed  Google Scholar 

  21. Naumann M, Sterzenbac G, Alexandra F, Dietrich T. Randomized controlled clinical pilot trial of titanium vs. glass fiber prefabricated posts: preliminary results after up to 3 years. Int J Prosthodont. 2007;20:499–503.

    PubMed  Google Scholar 

  22. Schmitter M, Rammelsberg P, Lenz J, et al. Teeth restored using fiber-reinforced posts: in vitro fracture tests and finite element analysis. Acta Biomater. 2010;6:3747–54.

    PubMed  Google Scholar 

  23. Cheleux N, Sharrock PJ. Mechanical properties of glass fiber-reinforced endodontic posts. Acta Biomater. 2009;5:3224–300.

    PubMed  Google Scholar 

  24. Sakaguchi RL, Powers JM. Craig’s restorative dental materials. 13th ed. Philadelphia: Elsevier Mosby; 2012.

    Google Scholar 

  25. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–69.

    PubMed  PubMed Central  Google Scholar 

  26. Silthamitag P, Chaijareenont P, Tattakorn K, et al. Effect of surface pretreatments on resin composite bonding to PEEK. Dent Mater J. 2016;35:668–74.

    Google Scholar 

  27. Henriques B, Fabris D, Mesquita-Guimarães J, et al. Influence of laser structuring of PEEK, PEEK-GF30 and PEEK-CF30 surfaces on the shear bond strength to a resin cement. J Mech Behav Biomed Mater. 2018;84:225–34.

    PubMed  Google Scholar 

  28. Chaijareenont P, Prakhamsai S, Silthampitag P, et al. Effects of different sulfuric acid etching concentrations on PEEK surface bonding to resin composite. Dent Mater J. 2018;37:385–92.

    PubMed  Google Scholar 

  29. Díez-Pascual AM, Díez-Vicente AL. Nano-TiO2 reinforced PEEK/PEI blends as biomaterials for load-bearing implant applications. ACS Appl Mater Interfaces. 2015;7:5561–73.

    PubMed  Google Scholar 

  30. Stawarczyk B, Jordan P, Schmidlin PR, et al. PEEK surface treatment effects on tensile bond strength to veneering resins. J Prosthet Dent. 2014;112:1278–88.

    PubMed  Google Scholar 

  31. Feerick EM, Kennedy J, Mullett H, FitzPatrick D, et al. Investigation of metallic and carbon fibre PEEK fracture fixation devices for three-part proximal humeral fractures. Med Eng Phys. 2013;35:712–22.

    PubMed  Google Scholar 

  32. Toth JM, Wang M, Estes BT, et al. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials. 2006;27:324–34.

    PubMed  Google Scholar 

  33. Skirbutis G, Dzingute A, Masiliunaite V, Sulcaite G, Zilinskas J. PEEK polymer's properties and its use in prosthodontics. A review. Stomato. 2018;20:54–8.

    Google Scholar 

  34. Maekawa M, Kanno Z, Wada T, et al. Mechanical properties of orthodontic wires made of super engineering plastic. Dent Mater J. 2015;34:114–9.

    PubMed  Google Scholar 

  35. Stawarczyk B, Beuer F, Wimmer T, et al. Polyetheretherketone—a suitable material for fixed dental prostheses? J Biomed Mater Res B Appl Biomater. 2013;101:1209–16.

    PubMed  Google Scholar 

  36. Zamboni Quitero MF, Garone-Netto N, de Freitas PM, de Cerqueira Luz MA. Effect of post translucency on bond strength of different resin luting agents to root dentin. J Prosthet Dent. 2014;111:35–41.

    PubMed  Google Scholar 

  37. Aleisa K, Al-Dwairi ZN, Alghabban R, Goodacre CJ. Effect of luting agents on the tensile bond strength of glass fiber posts: an in vitro study. J Prosthet Dent. 2013;110:216–22.

    PubMed  Google Scholar 

  38. Bonfante G, Kaizer OB, Pegoraro LF, do Valle AL. Tensile bond strength of glass fiber posts luted with different cements. Braz Oral Res. 2007;21:159–64.

    PubMed  Google Scholar 

  39. Haralur SB, Al Ahmari MA, AlQarni SA, Althobati MK. The effect of intraradicular multiple fiber and cast posts on the fracture resistance of endodontically treated teeth with wide root canals. Biomed Res Int. 2018;2018:1671498.

    PubMed  PubMed Central  Google Scholar 

  40. Fonseca RG, de Almeida JG, Haneda IG, Adabo GL. Effect of metal primers on bond strength of resin cements to base metals. J Prosthet Dent. 2009;101:262–8.

    PubMed  Google Scholar 

  41. Sproesser O, Schmidlin PR, Uhrenbacher J, et al. Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements. J Adhes Dent. 2014;16:465–72.

    PubMed  Google Scholar 

  42. ISO: Geometrical Product Specifications (GPS)—surface texture: profile method— terms, definitions and surface texture parameters (ISO 4287:1997). International Organization for Standardization, https://www.iso.org/iso/en/prods-services/ISOstore/store.htm (2009). Accessed 21 Aug 2019.

  43. Keul C, Liebermann A, Schmidlin PR, et al. Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites. J Adhes Dent. 2014;16:383–92.

    PubMed  Google Scholar 

  44. Tsuka H, Morita K, Kato K, et al. Evaluation of shear bond strength between PEEK and resin-based luting material. J Oral Biosci. 2017;59:231–6.

    Google Scholar 

  45. Renata GF, Santos PA, Isabella GH, Gelson LA. Effect of metal primers on bond strength of resin cements to base metals. J Prosthet Dent. 2009;101:262–8.

    Google Scholar 

  46. Lanza A, Aversa R, Rengo S, et al. 3D FEA of cemented steel, glass and carbon posts in a maxillary incisor. Dent Mater. 2005;21:709–15.

    Google Scholar 

  47. Lee KS, Shin JH, Kim JE, et al. Biomechanical evaluation of a tooth restored with high performance polymer PEKK post-core system: a 3D finite element analysis. Biomed Res Int. 2017;2017:1373127.

    PubMed  PubMed Central  Google Scholar 

  48. Stawarczyk B, Sener B, Trottmann A, et al. Discoloration of manually fabricated resins and industrially fabricated CAD/CAM blocks versus glass-ceramic: effect of storage media, duration, and subsequent polishing. Dent Mater J. 2012;31:377–83.

    PubMed  Google Scholar 

  49. Beuer F, Steff B, Naumann M, Sorensen JA. Load-bearing capacity of all-ceramic three-unit fixed partial dentures with different computer-aided design (CAD)/computer-aided manufacturing (CAM) fabricated framework materials. Eur J Oral Sci. 2008;11:381–6.

    Google Scholar 

  50. Zok FW, Miserez A. Property maps for abrasion resistance of materials. Acta Mater. 2007;55:6365–71.

    PubMed  PubMed Central  Google Scholar 

  51. Caglar I, Ates SM, Yesil DZ. An in vitro evaluation of the effect of various adhesives and surface treatments on bond strength of resin cement to polyetheretherketone. J Prosthodont. 2019;28:e342–e349349.

    PubMed  Google Scholar 

  52. Rikitoku S, Otake S, Nozaki K, et al. Influence of SiO2 content of polyetheretherketone (PEEK) on flexural properties and tensile bond strength to resin cement. Dent Mater J. 2019;38:464–70.

    PubMed  Google Scholar 

  53. Stawarczyk B, Taufall S, Roos M, et al. Bonding of composite resins to PEEK: the influence of adhesive systems and air-abrasion parameters. Clin Oral Investig. 2018;22(2):763–71.

    PubMed  Google Scholar 

  54. Strefezza C, Amaral MM, Quinto J Jr, et al. Effect of 830 nm diode laser irradiation of root canal on bond strength of metal and fiber post. Photomed Laser Surg. 2018;36:439–44.

    PubMed  Google Scholar 

  55. Makade CS, Meshram GK, Warhadpande M, Patil PG. A comparative evaluation of fracture resistance of endodontically treated teeth restored with different post core systems—an in-vitro study. J Adv Prosthodont. 2011;3:90–5.

    PubMed  PubMed Central  Google Scholar 

  56. Rosentritt M, Preis V, Behr M, et al. Shear bond strength between veneering composite and PEEK after different surface modifications. Clin Oral Investig. 2015;19:739–44.

    PubMed  Google Scholar 

  57. Schmidlin PR, Stawarczyk B, Wieland M, et al. Effect of different surface pre-treatments and luting materials on shear bond strength to PEEK. Dent Mater. 2010;26:553–9.

    PubMed  Google Scholar 

  58. Hallmann L, Mehl A, Sereno N, Hammerle CHF. The improvement of adhesive properties of PEEK through different pretreatments. Appl Sur Sci. 2012;258:7213–8.

    Google Scholar 

  59. Ruschel GH, Gomes ÉA, Silva-Sousa YT, et al. Mechanical properties and superficial characterization of a milled CAD-CAM glass fiber post. J Mech Behav Biomed Mater. 2018;82:187–92.

    PubMed  Google Scholar 

  60. Maroulakos G, Wanserski MW, Wanserski MM, et al. Effect of airborne-particle abrasion on 3-dimensional surface roughness and characteristic failure load of fiber-reinforced posts. J Prosthet Dent. 2019;121:461–9.

    PubMed  Google Scholar 

  61. Bezzon OL, Pedrazzi H, Zaniquelli O, da Silva TB. Effect of casting technique on surface roughness and consequent mass loss after polishing of NiCr and CoCr base metal alloys: a comparative study with titanium. J Prosthet Dent. 2004;92:274–7.

    PubMed  Google Scholar 

  62. Deng S, Djukic L, Paton R, Ye L. Thermoplastic–epoxy interactions and their potential applications in joining composite structures—a review. Compos Part A Appl Sci Manuf. 2015;68:121–32.

    Google Scholar 

  63. Younis M, Unkovskiy A, ElAyouti A, et al. The effect of various plasma gases on the shear bond strength between unfilled polyetheretherketone (PEEK) and veneering composite following artificial aging. Materials (Basel). 2019;12:E1447.

    Google Scholar 

  64. Fuhrmann G, Steiner M, Freitag-Wolf S, Kern M. Resin bonding to three types of polyaryletherketones (PAEKs)-durability and influence of surface conditioning. Dent Mater. 2014;30:357–63.

    PubMed  Google Scholar 

  65. Balbosh A, Kern M. Effect of surface treatment on retention of glass-fiber endodontic posts. J Prosthet Dent. 2006;95:218–23.

    PubMed  Google Scholar 

  66. Kermanshah H, Bolhari B, Sedaghat F, Omrani LR. Effect of intracanal post space treatments on push-out bond strength of fiber posts to root dentin. J Dent (Tehran). 2017;14:55–61.

    Google Scholar 

  67. Oguz Ahmet BS, Egilmez F, Ergun G, Cekic NI. Surface treatment effects on bond strength of CAD/CAM fabricated posts to root canal dentin. Am J Dent. 2019;32:113–7.

    PubMed  Google Scholar 

  68. Silva NRD, Rodrigues MP, Bicalho AA, et al. Effect of resin cement mixing and insertion method into the root canal on cement porosity and fiberglass post bond strength. J Adhes Dent. 2019;21:37–46.

    PubMed  Google Scholar 

  69. Shafiei F, Behroozibakhsh M, Abbasian A, Shahnavazi S. Bond strength of self-adhesive resin cement to base metal alloys having different surface treatments. Dent Res J (Isfahan). 2018;15:63–70.

    Google Scholar 

  70. Zhou L, Qian Y, Zhu Y, et al. The effect of different surface treatments on the bond strength of PEEK composite materials. Dent Mater. 2014;30:209–15.

    Google Scholar 

  71. Zoidis P. Polyetheretherketone overlay prosthesis over high noble ball attachments to overcome base metal sensitivity: a clinical report. J Prosthodont. 2018;27:688–93.

    PubMed  Google Scholar 

  72. Schwendicke F, Stolpe M. Cost-effectiveness of different post-retained restorations. J Endod. 2017;43:709–14.

    PubMed  Google Scholar 

  73. Harb IE, Abdel-Khalek EA, Hegazy SA. CAD/CAM constructed poly(etheretherketone) (PEEK) framework of Kennedy class I removable partial denture: a clinical report. J Prosthodont. 2019;2(8):e595–e598598.

    Google Scholar 

  74. Soares CJ, Valdivia AD, da Silva GR, et al. Longitudinal clinical evaluation of post systems: a literature review. Braz Dent J. 2012;23:135–740.

    PubMed  Google Scholar 

  75. Ferrari M, Cagidiaco MC, Goracci C, et al. Long-term retrospective study of the clinical performance of fiber posts. Am J Dent. 2007;20:287–91.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merve Benli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benli, M., Eker Gümüş, B., Kahraman, Y. et al. Surface characterization and bonding properties of milled polyetheretherketone dental posts. Odontology 108, 596–606 (2020). https://doi.org/10.1007/s10266-020-00484-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-020-00484-1

Keywords

Navigation