Skip to main content
Log in

Additive Manufacturing of Zirconia-Based Pastes for Dental Prosthesis Via Robocasting Method

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The main goal of this study is to develop zirconia-based pastes that are well-suited for the robocasting process, with the purpose of manufacturing dental prostheses. This study involved examination of the rheological properties of several zirconia-based pastes with different colors/shade and organic additives, as well as microstructural analysis (using XRD, SEM) and physical-mechanical characterization (through micro and nano-examination) of the printed and sintered material, after the application of different firing cycles (1400, 1450, 1540, and 1580 °C), in accordance with the ISO 6872 specifications for "Dental-Ceramic materials". Generally, homogeneous, and dense tetragonal yttria-stabilized zirconia specimens with fine microstructure, were produced. The mechanical properties increased as the firing cycle temperature increased. Results revealed that firing cycle of 1540 °C achieved the best balance regarding microstructure, physical, and mechanical strength of the specimens. The flexural strength ranged from 504 to 823 MPa, modulus of elasticity varied between 171 and 192 GPa, hardness and fracture toughness values ranged from 10.6 to 11.5 GPa and from 4.2 to 5.3 MPa m0.5, respectively. Nanoindentation experiments showed hardness values from 11.7 to 14.1 GPa and modulus of elasticity from 239 to 316 GPa. The zirconia ceramics met ISO 6872 standards for dental prostheses, indicating suitability for oral use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Min, H. Zhang, J. Xu, C. Li, D. Yu, M. Chen, and M. El Mansori, Toward the Mechanisms of Surface Texturing on the Wear Behavior of Dental Zirconia Ceramics under Dry and Saliva Lubricated Conditions, Wear, 2021, 484–485, p 203845.

    Google Scholar 

  2. K. Dimitriadis, D. Moschovas, and S. Agathopoulos, Microstructure and Mechanical Properties of Zirconia Stabilized with Increasing Y2O3, for Use in Dental Restorations, Int. J. Appl. Ceram. Technol., 2023, 20, p 350–359.

    Article  CAS  Google Scholar 

  3. N.J. Farsi, D.J. Farsi, M.B. Aldajani, N.M. Farsi, and A.A. El-Housseiny, Sustainability of Improvement in Oral Health-Related Quality of Life in Children After Dental Treatment, Patient Prefer. Adherence, 2021, 15, p 271–281.

    Article  PubMed  PubMed Central  Google Scholar 

  4. D. Khorsandi, A. Fahimipour, P. Abasian, S.S. Saber, M. Seyedi, S. Ghanavati, A. Ahmad, A.A. De Stephanis, F. Taghavinezhaddilami, A. Leonova, R. Mohammadinejad, M. Shabani, B. Mazzolai, V. Mattoli, F.R. Tay, and P. Makvandi, 3D and 4D Printing in Dentistry and Maxillofacial Surgery: Printing Techniques, Materials, and Applications, Acta Biomater., 2021, 122, p 26–49.

    Article  CAS  PubMed  Google Scholar 

  5. C. Espinar, A.D. Bona, M.M. Pérez, M. Tejada-Casado, and R. Pulgar, The Influence of Printing Angle on Color and Translucency of 3D Printed Resins for Dental Restorations, Dent. Mater., 2023, 39, p 410–417.

    Article  CAS  PubMed  Google Scholar 

  6. E. Bajraktarova-Valjakova, V. Korunoska-Stevkovska, B. Kapusevska, N. Gigovski, C. Bajraktarova-Misevska, and A. Grozdanov, Contemporary Dental Ceramic Materials, A Review: Chemical Composition, Physical and Mechanical Properties, Indications for Use, Open Access Maced. J. Med. Sci., 2018, 6, p 1742–1755.

    Article  PubMed  PubMed Central  Google Scholar 

  7. F. Zarone, S. Russo, and R. Sorrentino, From Porcelain-Fused-to-Metal to Zirconia: Clinical and Experimental Considerations, Dent. Mater., 2011, 27, p 83–96.

    Article  CAS  PubMed  Google Scholar 

  8. L. Fu, H. Engqvist, and W. Xia, Glass-Ceramics in Dentistry: A Review, Materials (Basel), 2020, 13, p 1049.

    Article  CAS  PubMed  Google Scholar 

  9. H.Y. Shi, R. Pang, J. Yang, D. Fan, H. Cai, H.B. Jiang, J. Han, E.S. Lee, and Y. Sun, Overview of Several Typical Ceramic Materials for Restorative Dentistry, Biomed. Res. Int., 2022, 2022, p 8451445.

    Article  PubMed  PubMed Central  Google Scholar 

  10. K. Dimitriadis, D. Moschovas, D.U. Tulyaganov, and S. Agathopoulos, Glass-Ceramics in the CaO-MgO-Al2O3-SiO2 System as Potential Dental Restorative Materials, Int. J. Appl. Ceram. Technol., 2021, 18, p 1938–1949.

    Article  CAS  Google Scholar 

  11. K. Sarna-Boś, K. Skic, J. Sobieszczański, P. Boguta, and R. Chałas, Contemporary Approach to the Porosity of Dental Materials and Methods of Its Measurement, Int. J. Mol. Sci., 2021, 22, p 8903.

    Article  PubMed  PubMed Central  Google Scholar 

  12. M. Díaz, A. Smirnov, C.F. Gutiérrez-González, D. Estrada, and J.F. Bartolomé, Microstructure and Mechanical Properties of Zirconia (3Y-TZP)/Zr Composites Prepared by Wet Processing and Subsequent Spark Plasma Sintering, Ceramics, 2020, 3, p 53–64.

    Article  Google Scholar 

  13. M.C. Chang, Color Variation in Color-Shade Polycrystalline Zirconia Ceramics by the Atmosphere-Controlled Firing, J. Korean Ceram. Soc., 2018, 55, p 116–125.

    Article  CAS  Google Scholar 

  14. Y. Sancheti, S. Kambala, S. Godbole, R. Kambala, M. Dhamande, and S. Pisulkar, Effect of Multiple Firing on Flexural Strength and Color Stability of Pressable All Ceramic Material: An In-Vitro Study, J. Datta Meghe. Inst. Med. Sci. Univ., 2020, 15, p 94–97.

    Article  Google Scholar 

  15. K. Dimitriadis, M. Constantinou, D. Moschovas, G. Constantinides, and S. Agathopoulos, Microstructural Features, Physicο-Mechanical Properties, and Wear Behavior of Dental Translucent Polychromic Multilayer Zirconia of Hybrid Composition Prepared by Milling Technology, J. Esthet. Restor. Dent., 2023, 35, p 1121–1130.

    Article  PubMed  Google Scholar 

  16. H. Huang, F. Zhang, J. Sun, and L. Gao, Effect of Three Kinds of Rare Earth Oxides on Chromaticity and Mechanical Properties of Zirconia Ceramic, Chin. j. Stomatol., 2006, 41, p 327–330.

    CAS  Google Scholar 

  17. H. Huang, Y. Zheng, F. Zhang, J. Sun, and L. Gao, Effect of Five Kinds of Pigments on the Chromaticity of Dental Zirconia Ceramic, Shanghai J. Stomatol., 2007, 16(4), p 413–417.

    CAS  Google Scholar 

  18. T. Zhang, J. Huang, J. Yan, X. Yin, and Y. Wang, Pigments Based on Er2O3-Al2O3: Preparation and Colouring Performance in Zirconia Ceramics, Ceram. Int., 2020, 46, p 17523–17531.

    Article  CAS  Google Scholar 

  19. A.C. Branco, R. Colaço, C.G. Figueiredo-Pina, and A.P. Serro, Recent Advances on 3D-Printed Zirconia-Based Dental Materials: A Review, Materials, 2023, 16, p 1860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Lamnini, H. Elsayed, Y. Lakhdar, F. Baino, F. Smeacetto, and E. Bernardo, Robocasting of Advanced Ceramics: Ink Optimization and Protocol to Predict the Printing Parameters—A Review, Heliyon, 2022, 8, p e10651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D.R. Kammler, D.E. Cillessen, K.R. Ford, E.C. Larkin, W.M. Davidson, J.M. Christopher, and J.T. Gibson, Flexural Strength of a Conventionally Processed and Additively Manufactured Debased 94% Alumina, Int. J. Appl. Ceram. Technol., 2022, 18, p 1640–1649.

    Article  Google Scholar 

  22. S. Nohut, J. Schlacher, I. Kraleva, M. Schwentenwein, and R. Bermejo, 3D-Printed Alumina-Based Ceramics with Spatially Resolved Porosity, Int. J. Appl. Ceram. Technol., 2023 https://doi.org/10.1111/ijac.14512

    Article  Google Scholar 

  23. Y. Lakhdar, C. Tuck, J. Binner, A. Terry, and R. Goodridge, Additive Manufacturing of Advanced Ceramic Materials, Prog. Mater. Sci., 2021, 116, p 100736.

    Article  CAS  Google Scholar 

  24. J. Wen, T. Zeng, X. Pan, Z. Zhong, S. Yu, and S. Cheng, Effect of Solid Loading and Carbon Additive on Microstructure and Mechanical Properties of 3D-Printed SiC Ceramic, Int. J. Appl. Ceram. Technol., 2022, 19, p 3007–3016.

    Article  CAS  Google Scholar 

  25. K. Liu, L. Qiu, Y. Zhang, Y. Du, C. Sun, S. Zhang, R. Tu, Y. Wu, H. Sun, and Y. Shi, Additive Manufacturing of Continuous Carbon Fiber–Reinforced Silicon Carbide Ceramic Composites, Int. J. Appl. Ceram. Technol., 2023, 20, p 3455–3469.

    Article  CAS  Google Scholar 

  26. M. Maillard, J. Chevalier, L. Gremillard, G.P. Baeza, E.J. Courtial, S. Marion, and V. Garnier, Optimization of Mechanical Properties of Robocast Alumina Parts Through Control of the Paste Rheology, J. Eur. Ceram. Soc., 2023, 47, p 2805–2817.

    Article  Google Scholar 

  27. E. Peng, D. Zhang, and J. Ding, Ceramic Robocasting: Recent Achievements, Potential, and Future Developments, Adv. Mater., 2018, 30, p e1802404.

    Article  PubMed  Google Scholar 

  28. J.A. Lewis, Direct Ink Writing of 3D Functional Materials, Adv. Funct. Mater., 2006, 16, p 2193–2204.

    Article  CAS  Google Scholar 

  29. J.A. Lewis, J.E. Smay, J. Stuecker, and J. Cesarano, Direct ink Writing of Three-Dimensional Ceramic Structures, J. Am. Ceram. Soc., 2006, 89, p 3599–3609.

    Article  CAS  Google Scholar 

  30. R. Galante, C.G. Figueiredo-Pina, and A.P. Serro, Additive Manufacturing of Ceramics for Dental Applications: A Review, Dent. Mater., 2019, 35, p 825–846.

    Article  CAS  PubMed  Google Scholar 

  31. Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, and Y. He, 3D Printing of Ceramics: A Review, J. Eur. Ceram. Soc., 2019, 39, p 661–687.

    Article  CAS  Google Scholar 

  32. J. Zhang, M. Yarahmadi, L. Cabezas, M. Serra, S. Elizalde, J.M. Cabrera, L. Llanes, and G. Fargas, Robocasting of Dense 8Y Zirconia Parts: Rheology, Printing, and Mechanical Properties, J. Eur. Ceram. Soc., 2023, 43, p 2794–2804.

    Article  CAS  Google Scholar 

  33. A.M. Stanciuc, C.M. Sprecher, J. Adrien, L.I. Roiban, M. Alini, L. Gremillard, and M. Peroglio, Robocast Zirconia-Toughened Alumina Scaffolds: Processing, Structural Characterisation and Interaction with Human Primary Osteoblasts, J. Eur. Ceram. Soc., 2018, 38, p 845–853.

    Article  CAS  Google Scholar 

  34. A.X. Xia and G. Duan, Effect of Solid Loading on Properties of Zirconia Ceramic by Direct Ink Writing, Mater. Res. Express, 2021, 8, p 015403.

    Article  CAS  Google Scholar 

  35. J. Liao, H. Chen, H. Luo, X. Wang, K. Zhou,and D. Zhang, Direct ink Writing of Zirconia Three-Dimensional Structures, J. Mater. Chem. C., 2017, 5, p 5867–5871.

    Article  CAS  Google Scholar 

  36. E. Kocyło, G. Franchin, P. Colombo, A. Chmielarz, and M. Potoczek, Hydroxyapatite-Coated ZrO2 Scaffolds with a Fluorapatite Intermediate Layer Produced by Direct Ink Writing, J. Eur. Ceram. Soc., 2021, 41, p 920–928.

    Article  Google Scholar 

  37. L. Hodásová, J. Sans, B.G. Molina, C. Alemán, L. Llanes, G. Fargas, and E. Armelin, Polymer Infiltrated Ceramic Networks with Biocompatible Adhesive and 3d-Printed Highly Porous Scaffolds, Addit. Manuf., 2021, 39, p 101850.

    Google Scholar 

  38. I. Rodrigues, M. Guedes, S. Olhero, A. Chefdor, A.C. Branco, M. Leite, A.P. Serro, and C.G. Figueiredo-Pina, Development of Free Binder Zirconia-Based Pastes for the Production of Dental Pieces by Robocasting, J. Manuf. Process., 2020, 57, p 1–9.

    Article  Google Scholar 

  39. J. Ebert, E. Ozkol, A. Zeichner, K. Uibel, O. Weiss, U. Koops, R. Telle, and H. Fischer, Direct Inkjet Printing of Dental Prostheses Made of Zirconia, J. Dent. Res., 2009, 88, p 673–676.

    Article  CAS  PubMed  Google Scholar 

  40. C. Santos, J. Baltazar, M.F.R.P. Alves, and S.M. Olhero, Development of Translucent Zirconia by Robocasting, Mater. Lett., 2022, 325, p 132785.

    Article  CAS  Google Scholar 

  41. A.C. Branco, R. Silva, T. Santos, H. Jorge, A.R. Rodrigues, R. Fernandes, S. Bandarra, I. Barahona, A.P.A. Matos, K. Lorenz, M. Polido, R. Colaço, A.P. Serro, and C.G. Figueiredo-Pina, Suitability of 3D Printed Pieces of Nanocrystalline Zirconia for Dental Applications, Dent. Mater., 2020, 36, p 442–455.

    Article  CAS  PubMed  Google Scholar 

  42. E. Peng, X. Wei, U. Garbe, D. Yu, B. Edouard, A. Liu, and J. Ding, Robocasting of Dense Yttria-Stabilized Zirconia Structures, J. Mater. Sci., 2018, 53, p 247–273.

    Article  CAS  Google Scholar 

  43. T. Yu, Z. Zhang, Q. Liu, R. Kuliiev, N. Orlovskaya, and D. Wu, Extrusion-Based Additive Manufacturing of Yttria-Partially-Stabilized Zirconia Ceramics, Ceram. Int., 2020, 46, p 5020–5027.

    Article  CAS  Google Scholar 

  44. J. Baltazar, M.F. Rodrigues Pais Alves, M.A. Martins, P.M.C. Torres, C. Santos, and S. Olhero, Flexural Strength of 3Y-TZP Bioceramics Obtained by Direct Write Assembly as Function of Residual Connected-Porosity, J. Mech. Behav. Biomed. Mater., 2022, 126, p 105035.

    Article  CAS  PubMed  Google Scholar 

  45. International Standards Organization (ISO) 3rd ed. Geneva: Switzerland; 2008. ISO 6872. Dentistry - Ceramic materials.

  46. A. Monshi, M.R. Foroughi, and M.R. Monshi, Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD, World J. Nano Sci. Eng., 2012, 2, p 54–160.

    Article  Google Scholar 

  47. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 Years of Image Analysis, Nat. Methods, 2012, 9, p 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. K. Dimitriadis, A.K. Sfikas, S. Kamnis, P. Tsolka, and S. Agathopoulos, Influence of Heat Treatment on the Microstructure and the Physical and Mechanical Properties of Dental Highly Translucent Zirconia, J. Adv. Prosthodont., 2022, 14, p 96–107.

    Article  PubMed  PubMed Central  Google Scholar 

  49. N. Sen and S. Isler, Microstructural, Physical, and Optical Characterization of High Translucency Zirconia Ceramics, J. Prosthet. Dent., 2020, 123, p 761–768.

    Article  CAS  PubMed  Google Scholar 

  50. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements, J. Am. Ceram. Soc., 1981, 64, p 533–538.

    Article  CAS  Google Scholar 

  51. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564–1583.

    Article  CAS  Google Scholar 

  52. G. Constantinides, K.S.R. Chandran, F.J. Ulm, and K.J.V. Vliet, Grid Indentation Analysis of Composite Microstructure and Mechanics: Principles and Validation, Mater. Sci. Eng. A, 2006, 430, p 189–202.

    Article  Google Scholar 

  53. M. Yarahmadi, P. Barcelona, G. Fargas, E. Xuriguera, and J.J. Roa, Optimization of the Ceramic Ink Used In Direct Ink Writing Through Rheological Properties Characterization of Zirconia-Based Ceramic Materials, Ceram. Int., 2022, 48, p 4775–4781.

    Article  CAS  Google Scholar 

  54. J. Baltazar, P.M.C. Torres, J. Dias-de-Oliveira, J. Pinho-da-Cruz, S. Gouveia, and S. Olhero, Influence of Filament Patterning in Structural Properties of Dense Alumina Ceramics Printed by Robocasting, J. Manuf. Process., 2021, 68, p 569–582.

    Article  Google Scholar 

  55. B.A.E. Ben-Arfa and R.C. Pullar, A Comparison of Bioactive Glass Scaffolds Fabricated by Robocasting From Powders Made by Sol–Gel and Melt-Quenching Methods, Processes, 2020, 8(5), p 615.

    Article  CAS  Google Scholar 

  56. A. Corker, H.C.H. Ng, R.J. Poole, and E. García-Tuñón, 3D printing with 2D Colloids: Designing Rheology Protocols to Predict “Printability” of Soft-Materials, Soft Matter, 2019, 15, p 1444–1456.

    Article  CAS  PubMed  Google Scholar 

  57. B. Stawarczyk, M. Ozcan, L. Hallmann, A. Ender, A. Mehl, and C.H. Hämmerlet, The effect of Zirconia Sintering Temperature on Flexural Strength, Grain Size, And Contrast Ratio, Clin. Oral Investig., 2013, 17, p 269–274.

    Article  PubMed  Google Scholar 

  58. H. Tong, C.B. Tanaka, M.R. Kaizer, and Y. Zhang, Characterization of Three Commercial Y-TZP Ceramics Produced for Their High-Translucency, High-Strength and High-Surface Area, Ceram. Int., 2016, 42, p 1077–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. E. Djurado, P. Bouvier, and G. Lucazeau, Crystallite Size Effect on the Tetragonal-Monoclinic Transition of Undoped Nanocrystalline Zirconia Studied by XRD and Raman Spectrometry, J. Solid State Chem., 2000, 149, p 399–407.

    Article  CAS  Google Scholar 

  60. W. Holand and G.H. Beal, Glass-ceramic technology. W. Holand and G.H. Beal, Ed., 2nd edn. American Ceramic Society, Westerville, 2002.

  61. N. Guo and M. Leu, Additive Manufacturing: Technology, Applications and Research Needs, Front. Mech. Eng., 2013, 8, p 215–243.

    Article  Google Scholar 

  62. A. Sola and A. Nouri, Microstructural Porosity in Additive Manufacturing: the Formation and Detection of Pores in Metal Parts Fabricated by Powder Bed Fusion, J. Adv. Manuf. Process., 2019, 1, p e10021.

    Article  CAS  Google Scholar 

  63. A. Sola, D. Bellucci, and V. Cannillo, Functionally Graded Materials for Orthopedic Applications—An Update on Design and Manufacturing, Biotechnol. Adv., 2016, 34, p 504–531.

    Article  CAS  PubMed  Google Scholar 

  64. A.Y. Al-Maharma, S.P. Patil, and B. Markert, Effects of Porosity on the Mechanical Properties of Additively Manufactured Components: A Critical review, Mater. Res. Express., 2020, 7, p 122001.

    Article  CAS  Google Scholar 

  65. Y.R. Zhang, W. Du, X.D. Zhou, and H.Y. Yu, Review of Research on the Mechanical Properties of the Human Tooth, Int. J. Oral Sci., 2014, 6, p 61–69.

    Article  PubMed  PubMed Central  Google Scholar 

  66. L. Shen, F. Barbosa de Sousa, N. Tay, T.S. Lang, V.L. Kaixin, J. Han, L. Kilpatrick-Liverman, W. Wang, S. Lavender, S. Pilch, and H.Y. Gan, Deformation Behavior of Normal Human Enamel: A Study by Nanoindentation, J. Mech. Behav. Biomed. Mater., 2020, 108, p 103799.

    Article  CAS  PubMed  Google Scholar 

  67. U. Lohbauer and S. Reich, Antagonist Wear of Monolithic Zirconia Crowns After 2 Years, Clin. Oral Investig., 2017, 21, p 1165–1172.

    Article  PubMed  Google Scholar 

  68. V. Preis, M. Behr, G. Handel, S. Schneider-Feyrer, S. Hahnel, and M. Rosentritt, Wear Performance of Dental Ceramics After Grinding and Polishing Treatments, J. Mech. Behav. Biomed. Mater., 2012, 10, p 13–22.

    Article  CAS  PubMed  Google Scholar 

  69. A.R. Boccaccini, Machinability and Brittleness of Glass-Ceramics, J. Mater. Process. Technol., 1997, 65, p 302–304.

    Article  Google Scholar 

  70. S.E. Elsaka, Optical and Mechanical Properties of Newly Developed Monolithic Multilayer Zirconia, J. Prosthodont., 2019, 28, p e279–e284.

    Article  PubMed  Google Scholar 

  71. S. Zhong, Q. Shi, Y. Deng, Y. Sun, C. Politis, and S. Yang, High-Performance Zirconia Ceramic Additively Manufactured via NanoParticle Jetting, Ceram. Int., 2022, 48, p 33485–33498.

    Article  CAS  Google Scholar 

  72. Q. Lian, W. Sui, X. Wu, F. Yang, and S. Yang, Additive Manufacturing of ZrO2 Ceramic Dental Bridges by Stereolithography, Rapid Prototyp. J., 2018, 24, p 114–119.

    Article  Google Scholar 

  73. F. Chen, H. Zhu, J.-M. Wu, S. Chen, L.-J. Cheng, Y.-S. Shi, Y.-C. Mo, C.-H. Li, and J. Xiao, Preparation and Biological Evaluation of ZrO2 All-Ceramic Teeth by DLP Technology, Ceram. Int., 2020, 46, p 11268–11274.

    Article  CAS  Google Scholar 

  74. Y. Shi and W. Wang, 3D Inkjet Printing of the Zirconia Ceramic Implanted Teeth, Mater. Lett., 2020, 261, p 127131.

    Article  CAS  Google Scholar 

  75. G. Su, Y. Zhang, C. Jin, Q. Zhang, J. Lu, Z. Liu, Q. Wang, X. Zhang, and J. Ma, 3D printed Zirconia Used as Dental Materials: A Critical Review, J. Biol. Eng., 2023, 17, p 78.

    Article  PubMed  PubMed Central  Google Scholar 

  76. A.C. Branco, R. Colaço, C.G. Figueiredo-Pina, and A.P. Serro, Recent Advances on 3D-Printed Zirconia-Based Dental Materials: A Review, Materials (Basel), 2023, 16, p 1860.

    Article  CAS  PubMed  Google Scholar 

  77. I. Rodrigues, S. Olhero, M. Guedes, A.P. Serro, and C.G. Figueiredo-Pina, 3D-Printing of Zirconia Dental Prostheses, Ann. Med., 2021, 53, p S89–S90.

    Article  CAS  PubMed Central  Google Scholar 

  78. J. Andrejovská, O. Petruš, D. Medveď, M. Vojtko, M. Riznič, P. Kizek, and J. Dusza, Hardness and Indentation Modulus of Human Enamel and Dentin, Surf. Interface Anal., 2023, 55, p 270–278.

    Article  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: Τ2ΕΔΚ-04124, 3DENT). The authors are deeply indebted to LINO 3D for providing the robocasting equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Dimitriadis.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitriadis, K., Baciu, D., Koltsakidis, S. et al. Additive Manufacturing of Zirconia-Based Pastes for Dental Prosthesis Via Robocasting Method. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09465-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09465-9

Keywords

Navigation