Skip to main content

Advertisement

Log in

Breast cancer immunotherapy: a comprehensive review

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Cancer remains a major health problem despite numerous new medical interventions that have been introduced in recent years. One of the major choices for cancer therapy is so-called adoptive cell therapy (ACT). ACT can be performed using both innate immune cells, including dendritic cells (DCs), natural killer (NK) cells, and γδ T cells and acquired immune T cells. It has become possible to utilize these cells in both their native and modified states in clinical studies. Because of considerable success in cancer treatment, ACT now plays a role in advanced therapy protocols. Genetic engineering of autologous and allogeneic immune cells (T lymphocytes, NK cells, macrophages, etc.) with chimeric antigen receptors (CAR) is a powerful new tool to target specific antigens on cancer cells. The Food and Drug Administration (FDA) in the US has approved certain CAR-T cells for hematologic malignancies and it is hoped that their use can be extended to incorporate a variety of cells, in particular NK cells. However, the ACT method has some limitations, such as the risk of rejection in allogeneic engrafts. Accordingly, numerous efforts are being made to eliminate or minimize this and other complications. In the present review, we have developed a guide to breast cancer (BC) therapy from conventional therapy, through to cell-based approaches, in particular novel technologies including CAR with emphasis on NK cells as a new and safer candidate in this field as well as the more recent aptamer technology, which can play a major role in BC immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

ACT:

Adoptive cell therapy

ADCC:

Antibody-dependent cell-mediated cytotoxicity

AE:

Adverse effect

ApEn-NK:

Aptamer engineered-NK

BC:

Breast cancer

BiKE:

Bi-specific killer engager

BiTE:

Bispecific T-cell engager

CAR:

Chimeric antigen receptor

CEA:

Carcinoembryonic antigen

CIK:

Cytokine-induced killer

CM:

Co-stimulatory molecule

CRS:

Cytokine release syndrome

CSC:

Cancer stem cells

CTL:

Cytotoxic T-lymphocyte

CTLA-4:

Cytotoxic T lymphocyte antigen-4

DC:

Dendritic cell

DCV:

DC-based vaccine

EGFR:

Epidermal growth factor receptor

EpCAM:

Epithelial cell adhesion molecule

FDA:

Food and Drug Administration

GD2:

Disialoganglioside

GvHD:

Graft-versus-host disease

HSPC:

Hematopoietic stem and progenitor cells

HSV:

Herpes simplex virus

HSV-tk:

HSV-1 thymidine kinase

ICIs:

Immune checkpoint inhibitors

IFN:

Interferon

IL:

Interleukin

iNKT:

Invariant natural killer T

iPSC:

Induced pluripotent stem cell

LAK:

Lymphokine-activated killer cells

mAb:

Monoclonal antibody

mBC:

Metastatic breast cancer

MDSC:

Myeloid-derived suppressor cell

MHC:

Major histocompatibility complex

mTOR:

Mammalian target of rapamycin

MUC:

Mucin

NK:

Natural killer

NKT:

Natural killer T

OV:

Oncolytic viruses

PBMC:

Peripheral blood mononuclear cell

PD-1:

Programmed cell death protein 1

pNK:

Primary NK

ROR:

Receptor tyrosine kinase-like orphan receptor

scFv:

Single-chain variable fragment

TAA:

Tumor-associated antigen

TCR-T:

T-cell receptor engineered T

TGF-β:

Transforming growth factor beta

TIL:

Tumor-infiltrating lymphocytes

TME:

Tumor microenvironment

TNBC:

Triple-negative breast cancer

TRUCK:

T cells redirected for universal cytokine killing

T-VEC:

Talimogene laherparepvec

UCB:

Umbilical cord blood

VEGF:

Vascular endothelial growth factor

VV:

Vaccinia virus

References

  1. Azamjah N, Soltan-Zadeh Y, Zayeri F. Global trend of breast cancer mortality rate: a 25-year study. Asian Pac J Cancer Prev. 2019;20(7):2015–20.

    PubMed  PubMed Central  Google Scholar 

  2. Fitzmaurice C, Abate D, Abbasi N, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 2019;5(12):1749–68.

    PubMed  PubMed Central  Google Scholar 

  3. Yousef AJA. Male breast cancer: epidemiology and risk factors. Semin Oncol. 2017;44(4):267–72.

    Google Scholar 

  4. Key TJ, Verkasalo PK, Banks E. Epidemiology of breast cancer. Lancet Oncol. 2001;2(3):133–40.

    CAS  PubMed  Google Scholar 

  5. Sharma GN, Dave R, Sanadya J, Sharma P, Sharma K. Various types and management of breast cancer: an overview. J Adv Pharm Technol Res. 2010;1(2):109–26.

    PubMed  PubMed Central  Google Scholar 

  6. Makki J. Diversity of breast carcinoma: histological subtypes and clinical relevance. Clin Med Insights Pathol. 2015;8:23–31.

    PubMed  PubMed Central  Google Scholar 

  7. Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res. 2017;50(1):1–23.

    Google Scholar 

  8. Cardoso F, Costa A, Norton L, et al. ESO-ESMO 2nd international consensus guidelines for advanced breast cancer (ABC2). Breast. 2014;23(5):489–502.

    CAS  PubMed  Google Scholar 

  9. Moo T-A, Sanford R, Dang C, Morrow M. Overview of breast cancer therapy. PET clin. 2018;13(3):339–54.

    PubMed  PubMed Central  Google Scholar 

  10. Chew HK. Adjuvant therapy for breast cancer: who should get what? West J Med. 2001;174(4):284–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Verrill M. Chemotherapy for early-stage breast cancer: a brief history. Br J Cancer. 2009;101(1):S2–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Abderrahman B, Jordan VC. Improving long-term adjuvant anti-oestrogenic therapy for breast cancer. Clin Pharmacist. 2016. https://doi.org/10.1211/CP.2016.20201203.

    Article  Google Scholar 

  13. Couzin-Frankel J. Cancer immunotherapy. Science. 2013;342:1432–3.

    CAS  PubMed  Google Scholar 

  14. Provenzano E, Ulaner GA, Chin SF. Molecular classification of breast cancer. PET Clin. 2018;13(3):325–38.

    PubMed  Google Scholar 

  15. Thomas R, Al-Khadairi G, Decock J. Immune checkpoint inhibitors in triple negative breast cancer treatment: promising future prospects. Front Oncol. 2020;10: 600573.

    PubMed  Google Scholar 

  16. Rugo HS, Rumble RB, Macrae E, et al. Endocrine therapy for hormone receptor–positive metastatic breast cancer: American Society of Clinical Oncology guideline. J Clin Oncol. 2016;34(25):3069–103.

    CAS  PubMed  Google Scholar 

  17. Russo J, Russo IH. The role of estrogen in the initiation of breast cancer. J Steroid Biochem Mol Biol. 2006;102(1–5):89–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Boér K. Fulvestrant in advanced breast cancer: evidence to date and place in therapy. Ther Adv Med Oncol. 2017;9(7):465–79.

    PubMed  PubMed Central  Google Scholar 

  19. Ji X, Lu Y, Tian H, Meng X, Wei M, Cho WC. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed Pharmacother. 2019;114: 108800.

    CAS  PubMed  Google Scholar 

  20. García-Aranda M, Redondo M. Immunotherapy: a challenge of breast cancer treatment. Cancers. 2019;11(12):1822.

    PubMed  PubMed Central  Google Scholar 

  21. Hunter P. The fourth pillar: despite some setbacks in the clinic, immunotherapy has made notable progress toward becoming an additional therapeutic option against cancer. EMBO Rep. 2017;18(11):1889–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. McCune JS. Rapid advances in immunotherapy to treat cancer. Clin Pharmacol Ther. 2018;103:540–4.

    PubMed  Google Scholar 

  23. Marei HE, Althani A, Caceci T, et al. Recent perspective on CAR and Fcγ-CR T cell immunotherapy for cancers: Preclinical evidence versus clinical outcomes. Biochem pharmacol. 2019;166:335–46.

    CAS  PubMed  Google Scholar 

  24. Kokate R. A systematic overview of cancer immunotherapy: an emerging therapy. Pharm Pharmacol Int J. 2017;5:31–5.

    Google Scholar 

  25. Pallerla S, Comeau J, Jois S. Cancer vaccines, treatment of the future: with emphasis on HER2-positive breast cancer. Int J Mol Sci. 2021;22(2):779.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Stoff-Khalili M, Dall P, Curiel D. Gene therapy for carcinoma of the breast. Cancer Gene Ther. 2006;13(7):633–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sheikh-Hosseini M, Larijani B, Kakroodi ZG, et al. Gene therapy as an emerging therapeutic approach to breast cancer: new developments and challenges. Hum Gene Ther. 2021;32:1330–45.

    CAS  PubMed  Google Scholar 

  28. Fisusi FA, Akala EO. Drug combinations in breast cancer therapy. Pharmaceutical nanotechnol. 2019;7(1):3–23.

    CAS  Google Scholar 

  29. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.

    CAS  PubMed  Google Scholar 

  30. Sama CB, Dzekem B, Kehbila J, et al. Awareness of breast cancer and breast self-examination among female undergraduate students in a higher teachers training college in Cameroon. Pan Afr Med J. 2017;28(1):91.

    PubMed  PubMed Central  Google Scholar 

  31. Nde FP, Assob JCN, Kwenti TE, Njunda AL, Tainenbe TRG. Knowledge, attitude and practice of breast self-examination among female undergraduate students in the University of Buea. BMC Res Notes. 2015;8(1):43.

    PubMed  PubMed Central  Google Scholar 

  32. Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J. Clinical application of cytokines in cancer immunotherapy. Drug Des Devel Ther. 2021;15:2269–88.

    PubMed  PubMed Central  Google Scholar 

  33. Bruera S, Leung CK. Immune-related adverse events with other cancer immunotherapies. In: Suarez-Almazor ME, Calabrese LH, editors. Rheumatic diseases and syndromes induced by cancer immunotherapy: a handbook for diagnosis and management. Cham: Springer; 2021. p. 255–69. https://doi.org/10.1007/978-3-030-56824-5_11.

    Chapter  Google Scholar 

  34. Romee R, Leong JW, Fehniger TA. Utilizing cytokines to function-enable human NK cells for the immunotherapy of cancer. Scientifica. 2014;2014: 205796.

    PubMed  PubMed Central  Google Scholar 

  35. Nicolini A, Carpi A, Rossi G. Cytokines in breast cancer. Growth Factor Rev. 2006;17(5):325–37.

    CAS  Google Scholar 

  36. Kimmick G, Ratain MJ, Berry D, Woolf S, Norton L, Muss HB. Subcutaneously administered recombinant human interleukin-2 and interferon alfa-2a for advanced breast cancer: a phase II study of the Cancer and Leukemia Group B (CALGB 9041). Inves New Drugs. 2004;22(1):83–9.

    CAS  Google Scholar 

  37. Fallon JK, Vandeveer AJ, Schlom J, Greiner JW. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody. Oncotarget. 2017;8(13):20558–71.

    PubMed  PubMed Central  Google Scholar 

  38. Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9(3):34.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Reslan L, Dalle S, Dumontet C. Understanding and circumventing resistance to anticancer monoclonal antibodies. MAbs. 2009;1(3):222–9.

    PubMed  PubMed Central  Google Scholar 

  40. Barzaman K, Moradi-Kalbolandi S, Hosseinzadeh A, Kazemi MH, Khorramdelazad H, Safari E, Farahmand L. Breast cancer immunotherapy: Current and novel approaches. Int Immunopharmacol. 2021;98: 107886.

    CAS  PubMed  Google Scholar 

  41. Derakhshani A, Rezaei Z, Safarpour H, et al. Overcoming trastuzumab resistance in HER2-positive breast cancer using combination therapy. J Cell Physiol. 2020;235(4):3142–56.

    CAS  PubMed  Google Scholar 

  42. Lavaud P, Andre F. Strategies to overcome trastuzumab resistance in HER2-overexpressing breast cancers: focus on new data from clinical trials. BMC Med. 2014;12(1):132.

    PubMed  PubMed Central  Google Scholar 

  43. Yu S, Liu Q, Han X, et al. Development and clinical application of anti-HER2 monoclonal and bispecific antibodies for cancer treatment. Exp Hematol Oncol. 2017;6(1):31.

    PubMed  PubMed Central  Google Scholar 

  44. Bernard-Marty C, Lebrun F, Awada A, Piccart MJ. Monoclonal antibody-based targeted therapy in breast cancer. Drugs. 2006;66(12):1577–91.

    CAS  PubMed  Google Scholar 

  45. Mohit E, Hashemi A, Allahyari M. Breast cancer immunotherapy: monoclonal antibodies and peptide-based vaccines. Expert Rev Clin Immunol. 2014;10(7):927–61.

    CAS  PubMed  Google Scholar 

  46. Naujokat C. Targeting human cancer stem cells with monoclonal antibodies. J Clin Cell Immunol S. 2012;5:007.

    Google Scholar 

  47. Cioffi M, Dorado J, Baeuerle PA, Heeschen C. EpCAM/CD3-bispecific t-cell engaging antibody MT110 eliminates primary human pancreatic cancer stem cells immunotherapy against pancreatic cancer stem cells. Clin Cancer Res. 2012;18(2):465–74.

    CAS  PubMed  Google Scholar 

  48. Herrmann I, Baeuerle PA, Friedrich M, et al. Highly efficient elimination of colorectal tumor-initiating cells by an EpCAM/CD3-bispecific antibody engaging human T cells. PLoS ONE. 2010;5(10): e13474.

    PubMed  PubMed Central  Google Scholar 

  49. Dillon PM, Tushir-Singh J, Lum LG. Bispecific antibodies for the treatment of breast cancer. Expert Opin Biol Ther. 2022;22(8):1017–27.

    CAS  PubMed  Google Scholar 

  50. Kebenko M, Goebeler ME, Wolf M, et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors. Oncoimmunology. 2018;7(8): e1450710.

    PubMed  PubMed Central  Google Scholar 

  51. Zhou S, Liu M, Ren F, Meng X, Yu J. The landscape of bispecific T cell engager in cancer treatment. Biomark Res. 2021;9(1):38.

    PubMed  PubMed Central  Google Scholar 

  52. Wang Q, Chen Y, Park J, et al. Design and production of bispecific antibodies. Antibodies. 2019;8(3):43.

    PubMed  PubMed Central  Google Scholar 

  53. Dees S, Ganesan R, Singh S, Grewal IS. Bispecific antibodies for triple negative breast cancer. Trends Cancer. 2021;7(2):162–73.

    CAS  PubMed  Google Scholar 

  54. Formenti SC, Lee P, Adams S, et al. Focal irradiation and systemic TGFβ blockade in metastatic breast cancerradiation and TGFβ blockade in metastatic breast cancer. Clin Cancer Res. 2018;24(11):2493–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Parihar R, Nadella P, Lewis A, et al. A phase I study of interleukin 12 with trastuzumab in patients with human epidermal growth factor receptor-2-overexpressing malignancies: analysis of sustained interferon γ production in a subset of patients. Clin Cancer Res. 2004;10(15):5027–37.

    CAS  PubMed  Google Scholar 

  56. Mani A, Roda J, Young D, et al. A phase II trial of trastuzumab in combination with low-dose interleukin-2 (IL-2) in patients (PTS) with metastatic breast cancer (MBC) who have previously failed trastuzumab. Breast Cancer Res Treat. 2009;117:83–9.

    CAS  PubMed  Google Scholar 

  57. Sanz L, Álvarez-Vallina L. Engineered mRNA and the rise of next-generation antibodies. Antibodies. 2021;10(4):37.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kakimi K, Karasaki T, Matsushita H, Sugie T. Advances in personalized cancer immunotherapy. Breast Cancer. 2017;24(1):16–24.

    PubMed  Google Scholar 

  59. González-Navajas JM, Fan DD, Yang S, et al. The impact of Tregs on the anticancer immunity and the efficacy of immune checkpoint inhibitor therapies. Front Immunol. 2021;12: 625783.

    PubMed  PubMed Central  Google Scholar 

  60. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Emens LA. Breast cancer immunotherapy: facts and hopes. Clin Cancer Res. 2018;24(3):511–20.

    CAS  PubMed  Google Scholar 

  62. Chauvin J-M, Zarour HM. TIGIT in cancer immunotherapy. J Immunother Cancer. 2020;8(2): e000957.

    PubMed  PubMed Central  Google Scholar 

  63. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Stovgaard ES, Nielsen D, Hogdall E, Balslev E. Triple negative breast cancer–prognostic role of immune-related factors: a systematic review. Acta Oncol. 2018;57(1):74–82.

    CAS  PubMed  Google Scholar 

  65. Kagihara JA, Andress M, Diamond JR. Nab-paclitaxel and atezolizumab for the treatment of PD-L1-positive, metastatic triple-negative breast cancer: review and future directions. Expert Rev Precis Med Drug Dev. 2020;5(2):59–65.

    PubMed  PubMed Central  Google Scholar 

  66. Vonderheide RH, Domchek SM, Clark AS. Immunotherapy for breast cancer: what are we missing? Clin Cancer Res. 2017;23:2640–6.

    PubMed  PubMed Central  Google Scholar 

  67. Majidpoor J, Mortezaee K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin Immunol. 2021;226:108707.

    CAS  PubMed  Google Scholar 

  68. Draganov D, Han Z, Rana A, Bennett N, Irvine DJ, Lee PP. Ivermectin converts cold tumors hot and synergizes with immune checkpoint blockade for treatment of breast cancer. NPJ Breast Cancer. 2021;7(1):22.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim K, Skora AD, Li Z, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci U S A. 2014;111(32):11774–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Loi S, Dushyanthen S, Beavis PA, et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res. 2016;22(6):1499–509.

    CAS  PubMed  Google Scholar 

  71. Kennedy LB, Salama AK. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70(2):86–104.

    PubMed  Google Scholar 

  72. Chhabra N, Kennedy J. A review of cancer immunotherapy toxicity: immune checkpoint inhibitors. J Med Toxicol. 2021;17:411–24.

    PubMed  PubMed Central  Google Scholar 

  73. Naing A, Thistlethwaite F, De Vries EG, et al. CX-072 (pacmilimab), a Probody® PD-L1 inhibitor, in advanced or recurrent solid tumors (PROCLAIM-CX-072): an open-label dose-finding and first-in-human study. J Immunother Cancer. 2021;9(7): e002447.

    PubMed  PubMed Central  Google Scholar 

  74. Sanborn RE, Hamid O, de Vries EG, et al. CX-072 (pacmilimab), a Probody PD-L1 inhibitor, in combination with ipilimumab in patients with advanced solid tumors (PROCLAIM-CX-072): a first-in-human, dose-finding study. J Immunother Cancer. 2021;9(7): e002446.

    PubMed  PubMed Central  Google Scholar 

  75. Zhu SY, Yu KD. Breast cancer vaccines: disappointing or promising? Front Immunol. 2022;13: 828386.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Behravan J, Razazan A, Behravan G. Towards breast cancer vaccines, progress and challenges. Curr Drug Discov Technol. 2019;16(3):251–8.

    CAS  PubMed  Google Scholar 

  77. Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019;4(1):7.

    PubMed  PubMed Central  Google Scholar 

  78. Mittendorf EA, Lu B, Melisko M, et al. Efficacy and safety analysis of nelipepimut-S vaccine to prevent breast cancer recurrence: a randomized, multicenter, phase III clinical trial. Clin Cancer Res. 2019;25(14):4248–54.

    CAS  PubMed  Google Scholar 

  79. Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G. Dendritic cells as vectors for therapy. Cell. 2001;106(3):271–4.

    CAS  PubMed  Google Scholar 

  80. Arab A, Yazdian-Robati R, Behravan J. HER2-Positive breast cancer immunotherapy: a focus on vaccine development. Arch Immunol Ther Exp. 2020;68(1):2.

    CAS  Google Scholar 

  81. Fuentes-Antras J, Guevara-Hoyer K, Baliu-Piqué M, et al. Adoptive cell therapy in breast cancer: a current perspective of next-generation medicine. Front Oncol. 2020;10: 605633.

    PubMed  PubMed Central  Google Scholar 

  82. Safety Study Of Chemotherapy Combined With Dendritic Cell Vaccine to Treat Breast Cancer. https://clinicaltrials.gov/ct2/show/study/NCT02018458?term=NCT02018458&draw=2&rank=1

  83. O’Shaughnessy J, Roberts LK, Smith JL, et al. Safety and initial clinical efficacy of a dendritic cell (DC) vaccine in locally advanced, triple-negative breast cancer (TNBC) patients (pts). J Clin Oncol. 2016;34(15suppl):1086.

    Google Scholar 

  84. Sutherland SI, Ju X, Horvath L, Clark GJ. Moving on from Sipuleucel-T: new dendritic cell vaccine strategies for prostate cancer. Front Immunol. 2021;12: 641307.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mair F, Liechti T. Comprehensive phenotyping of human dendritic cells and monocytes. Cytometry A. 2021;99(3):231–42.

    PubMed  Google Scholar 

  86. Bouzid R, Peppelenbosch M, Buschow SI. Opportunities for conventional and in situ cancer vaccine strategies and combination with immunotherapy for gastrointestinal cancers, a review. Cancers. 2020;12(5):1121.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res. 2019;38(1):146.

    PubMed  PubMed Central  Google Scholar 

  88. Li S, Wu J, Li X, Chen J, Wang C. Biomaterial-enhanced cancer vaccines. Mater Des. 2022;218: 110720.

    CAS  Google Scholar 

  89. Suryawanshi YR, Zhang T, Essani K. Oncolytic viruses: emerging options for the treatment of breast cancer. Med Oncol. 2017;34(3):43.

    PubMed  Google Scholar 

  90. Cejalvo JM, Falato C, Villanueva L, et al. Oncolytic viruses: a new immunotherapeutic approach for breast cancer treatment? Cancer Treat Rev. 2022;106: 102392.

    CAS  PubMed  Google Scholar 

  91. Javanbakht M, Tahmasebzadeh S, Cegolon L, et al. Oncolytic Viruses: a novel treatment strategy for breast cancer. Genes Dis. 2021. https://doi.org/10.1016/j.gendis.2021.11.011.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zhu W, Wei L, Zhang H, Chen J, Qin X. Oncolytic adenovirus armed with IL-24 inhibits the growth of breast cancer in vitro and in vivo. J Exp Clin Cancer Res. 2012;31(1):51.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hu JC, Coffin RS, Davis CJ, et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 2006;12(22):6737–47.

    CAS  PubMed  Google Scholar 

  94. Kai M, Marx AN, Liu DD, et al. A phase II study of talimogene laherparepvec for patients with inoperable locoregional recurrence of breast cancer. Sci Rep. 2021;11(1):22242.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Talimogene Laherparepvec in Combination With Neoadjuvant Chemotherapy in Triple Negative Breast Cancer. https://clinicaltrials.gov/ct2/show/NCT02779855?term=NCT02779855&draw=2&rank=1

  96. Luo C, Wang P, He S, Zhu J, Shi Y, Wang J. Progress and prospect of immunotherapy for triple-negative breast cancer. Front Oncol. 2022;12: 919072.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Immunization Strategy With Intra-tumoral Injections of Pexa-Vec With Ipilimumab in Metastatic / Advanced Solid Tumors. (ISI-JX). https://clinicaltrials.gov/ct2/show/NCT02977156?term=NCT02977156&draw=2&rank=1

  98. SBRT and Oncolytic Virus Therapy Before Pembrolizumab for Metastatic TNBC and NSCLC (STOMP). https://clinicaltrials.gov/ct2/show/NCT03004183?term=NCT03004183&draw=2&rank=1

  99. Hossain JA, Riecken K, Miletic H, Fehse B. Cancer suicide gene therapy with TK. 007. In: Düzgüneş N, editor. Suicide gene therapy methods in molecular biology, vol. 1895. New York: Humana Press; 2019. p. 11–26.

    Google Scholar 

  100. Zhao Q, Jiang Y, Xiang S, et al. Engineered TCR-T cell immunotherapy in anticancer precision medicine: pros and cons. Front Immunol. 2021;12: 658753.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rohaan MW, Wilgenhof S, Haanen JB. Adoptive cellular therapies: the current landscape. Virchows Arch. 2019;474(4):449–61.

    PubMed  Google Scholar 

  102. Kang S, Gao X, Zhang L, Yang E, Li Y, Yu L. The advances and challenges of NK cell-based cancer immunotherapy. Curr Oncol. 2021;28(2):1077–93.

    PubMed  PubMed Central  Google Scholar 

  103. Besser MJ, Shapira-Frommer R, Itzhaki O, et al. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin Cancer Res. 2013;19(17):4792–800.

    CAS  PubMed  Google Scholar 

  104. Nelson MA, Ngamcherdtrakul W, Luoh S-W, Yantasee W. Prognostic and therapeutic role of tumor-infiltrating lymphocyte subtypes in breast cancer. Cancer Metastasis Rev. 2021;40(2):519–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Li D, Li X, Zhou WL, et al. Genetically engineered T cells for cancer immunotherapy. Signal Transduct Target Ther. 2019;4(1):35.

    PubMed  PubMed Central  Google Scholar 

  106. Autologous Tumor Infiltrating Lymphocytes in Patients With Pretreated Metastatic Triple Negative Breast Cancer. https://clinicaltrials.gov/ct2/show/NCT04111510?term=NCT04111510&draw=2&rank=1

  107. Immunotherapy Using Tumor Infiltrating Lymphocytes for Patients With Metastatic Cancer. https://clinicaltrials.gov/ct2/show/NCT01174121?term=NCT01174121&draw=2&rank=1

  108. Engineered TILs/CAR-TILs to Treat Advanced Solid Tumors. Available from: https://clinicaltrials.gov/ct2/show/NCT04842812?term=NCT04842812&draw=2&rank=1

  109. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–5.

    CAS  PubMed  Google Scholar 

  110. Kumar A, Watkins R, Vilgelm AE. Cell therapy with TILs: training and taming T cells to fight cancer. Front Immunol. 2021;12: 690499.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Parkhurst MR, Yang JC, Langan RC, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19(3):620–6.

    CAS  PubMed  Google Scholar 

  112. Wang L, Liu J. Engineered drug-loaded cells and cell derivatives as a delivery platform for cancer immunotherapy. Biomater Sci. 2021;6:1104–16.

    Google Scholar 

  113. Morgan MA, Büning H, Sauer M, Schambach A. Use of cell and genome modification technologies to generate improved “off-the-shelf” CAR T and CAR NK Cells. Front Immunol. 2020;11:1965.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Fousek K, Watanabe J, Joseph SK, et al. CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression. Leukemia. 2021;35(1):75–89.

    CAS  PubMed  Google Scholar 

  115. Voynova E, Kovalovsky D. From hematopoietic stem cell transplantation to chimeric antigen receptor therapy: advances, limitations and future perspectives. Cells. 2021;10(11):2845.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 2020;59: 102975.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. 2015;15(8):1145–54.

    CAS  PubMed  Google Scholar 

  118. Basar R, Daher M, Rezvani K. Next-generation cell therapies: the emerging role of CAR-NK cells. Hematol Am Soc Hematol Educ Program. 2020;2020(1):570–8.

    Google Scholar 

  119. Wang W, Jiang J, Wu C. CAR-NK for tumor immunotherapy: clinical transformation and future prospects. Cancer Lett. 2020;472:175–80.

    CAS  PubMed  Google Scholar 

  120. Tokarew N, Ogonek J, Endres S, von Bergwelt-Baildon M, Kobold S. Teaching an old dog new tricks: next-generation CAR T cells. Br J Cancer. 2019;120(1):26–37.

    CAS  PubMed  Google Scholar 

  121. Elahi R, Khosh E, Tahmasebi S, Esmaeilzadeh A. Immune cell hacking: challenges and clinical approaches to create smarter generations of chimeric antigen receptor T cells. Front Immunol. 2018;9:1717.

    PubMed  PubMed Central  Google Scholar 

  122. Knochelmann HM, Smith AS, Dwyer CJ, Wyatt MM, Mehrotra S, Paulos CM. CAR T cells in solid tumors: blueprints for building effective therapies. Front Immunol. 2018;9:1740.

    PubMed  PubMed Central  Google Scholar 

  123. Garrido F, Aptsiauri N, Doorduijn EM, Lora AMG, van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol. 2016;39:44–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Helmy KY, Patel SA, Nahas GR, Rameshwar P. Cancer immunotherapy: accomplishments to date and future promise. Ther Deliv. 2013;4(10):1307–20.

    CAS  PubMed  Google Scholar 

  125. Xu Q, Harto H, Berahovich R, et al. Generation of CAR-T cells for cancer immunotherapy. Methods Mol Biol. 2019;1884:349–60.

    CAS  PubMed  Google Scholar 

  126. Graham C, Jozwik A, Pepper A, Benjamin R. Allogeneic CAR-T cells: more than ease of access? Cells. 2018;7(10):155.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Han D, Xu Z, Zhuang Y, Ye Z, Qian Q. Current progress in CAR-T cell therapy for hematological malignancies. J Cancer. 2021;12(2):326–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu D. CAR-T “the living drugs”, immune checkpoint inhibitors, and precision medicine: a new era of cancer therapy. J Hematol Oncol. 2019;12:113.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hinrichs CS, Rosenberg SA. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev. 2014;257(1):56–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–52.

    PubMed  Google Scholar 

  131. Zhou R, Yazdanifar M, Roy LD, et al. CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth. Front Immunol. 2019;10:1149.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wei J, Sun H, Zhang A, et al. A novel AXL chimeric antigen receptor endows T cells with anti-tumor effects against triple negative breast cancers. Cell Immunol. 2018;331:49–58.

    CAS  PubMed  Google Scholar 

  133. Xia L, Zheng ZZ, Liu JY, et al. EGFR-targeted CAR-T cells are potent and specific in suppressing triple-negative breast cancer both in vitro and in vivo. Clin Transl Immunol. 2020;9(5): e1135.

    CAS  Google Scholar 

  134. Seitz CM, Schroeder S, Knopf P, et al. GD2-targeted chimeric antigen receptor T cells prevent metastasis formation by elimination of breast cancer stem-like cells. Oncoimmunology. 2020;9(1):1683345.

    PubMed  Google Scholar 

  135. Wei H, Wang Z, Kuang Y, et al. Intercellular adhesion molecule-1 as target for CAR-T-cell therapy of triple-negative breast cancer. Front Immunol. 2020;11: 573823.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wallstabe L, Göttlich C, Nelke LC, et al. ROR1-CAR T cells are effective against lung and breast cancer in advanced microphysiologic 3D tumor models. JCI insight. 2019;4(18):e126345.

    PubMed  PubMed Central  Google Scholar 

  137. Song DG, Ye Q, Poussin M, Chacon JA, Figini M, Powell DJ. Effective adoptive immunotherapy of triple-negative breast cancer by folate receptor-alpha redirected CAR T cells is influenced by surface antigen expression level. J Hematol Oncol. 2016;9(1):1–12.

    Google Scholar 

  138. Han Y, Xie W, Song DG, Powell DJ. Control of triple-negative breast cancer using ex vivo self-enriched, costimulated NKG2D CAR T cells. J Hematol Oncol. 2018;11(1):1–13.

    Google Scholar 

  139. Dees S, Ganesan R, Singh S, Grewal IS. Emerging CAR-T cell therapy for the treatment of triple-negative breast cancer. Mol Cancer Ther. 2020;19(12):2409–21.

    CAS  PubMed  Google Scholar 

  140. Bajgain P, Tawinwung S, D’Elia L, et al. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation. J Immunother Cancer. 2018;6(1):34.

    PubMed  PubMed Central  Google Scholar 

  141. Zhao Z, Li Y, Liu W, Li X. Engineered IL-7 receptor enhances the therapeutic effect of AXL-CAR-T cells on triple-negative breast cancer. BioMed Res Int. 2020;2020:4795171.

    PubMed  PubMed Central  Google Scholar 

  142. Szöőr Á, Tóth G, Zsebik B, et al. Trastuzumab derived HER2-specific CARs for the treatment of trastuzumab-resistant breast cancer: CAR T cells penetrate and eradicate tumors that are not accessible to antibodies. Cancer lett. 2020;484:1–8.

    PubMed  Google Scholar 

  143. Zhou F, Krishnamurthy J, Wei Y, et al. Chimeric antigen receptor T cells targeting HERV-K inhibit breast cancer and its metastasis through downregulation of Ras. Oncoimmunology. 2015;4(11): e1047582.

    PubMed  PubMed Central  Google Scholar 

  144. Wilkie S, van Schalkwyk MC, Hobbs S, et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clinical Immunol. 2012;32(5):1059–70.

    CAS  Google Scholar 

  145. Rozenbaum M, Meir A, Aharony Y, et al. Gamma-delta CAR-T cells show CAR-directed and independent activity against leukemia. Front Immunol. 2020;11:1347.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Haplo / Allogeneic NKG2DL-targeting Chimeric Antigen Receptor-grafted γδ T Cells for Relapsed or Refractory Solid Tumour. https://clinicaltrials.gov/ct2/show/NCT04107142?term=NCT04107142&draw=2&rank=1

  147. Choi BD, Yu X, Castano AP, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 2019;37(9):1049–58.

    CAS  PubMed  Google Scholar 

  148. Wang J, Zhou P. New approaches in CAR-T cell immunotherapy for breast cancer. In: Song E, Hu H, editors. Translational research in breast cancer. Singapore: Springer; 2017. p. 371–81.

    Google Scholar 

  149. Ramello MC, Haura EB, Abate-Daga D. CAR-T cells and combination therapies: What’s next in the immunotherapy revolution? Pharmacol research. 2018;129:194–203.

    CAS  Google Scholar 

  150. Li H, Yuan W, Bin S, et al. Overcome trastuzumab resistance of breast cancer using anti-HER2 chimeric antigen receptor T cells and PD1 blockade. Am J Cancer Res. 2020;10(2):688–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Sun R, Luo H, Su J, et al. Olaparib suppresses MDSC recruitment via SDF1α/CXCR4 axis to improve the anti-tumor efficacy of CAR-T cells on breast cancer in mice. Mol Ther. 2021;29(1):60–74.

    CAS  PubMed  Google Scholar 

  152. Caratelli S, Arriga R, Sconocchia T, et al. In vitro elimination of epidermal growth factor receptor-overexpressing cancer cells by CD32A-chimeric receptor T cells in combination with cetuximab or panitumumab. Int J Cancer. 2020;146(1):236–47.

    CAS  PubMed  Google Scholar 

  153. Stüber T, Monjezi R, Wallstabe L, et al. Inhibition of TGF-β-receptor signaling augments the antitumor function of ROR1-specific CAR T-cells against triple-negative breast cancer. J Immunother Cancer. 2020;8(1): e000676.

    PubMed  PubMed Central  Google Scholar 

  154. Li Y, Xiao F, Zhang A, et al. Oncolytic adenovirus targeting TGF-β enhances anti-tumor responses of mesothelin-targeted chimeric antigen receptor T cell therapy against breast cancer. Cell immunol. 2020;348: 104041.

    CAS  PubMed  Google Scholar 

  155. Xu N, Palmer DC, Robeson AC, et al. STING agonist promotes CAR T cell trafficking and persistence in breast cancer. J Exp Med. 2020;218(2): e20200844.

    PubMed Central  Google Scholar 

  156. Rezvani K, Rouce R, Liu E, Shpall E. Engineering natural killer cells for cancer immunotherapy. Mol Ther. 2017;25(8):1769–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Li C, Mei H, Hu Y. Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy. Brief Funct Genomics. 2020;19(3):175–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Lee DA. Cellular therapy: adoptive immunotherapy with expanded natural killer cells. Immunol rev. 2019;290(1):85–99.

    CAS  PubMed  Google Scholar 

  159. Davis ZB, Vallera DA, Miller JS, Felices M. Natural killer cells unleashed: Checkpoint receptor blockade and BiKE/TriKE utilization in NK-mediated anti-tumor immunotherapy. Semin Immunol. 2017;31:64–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Gabrielli S, Ortolani C, Del Zotto G, et al. The memories of NK cells: innate-adaptive immune intrinsic crosstalk. J Immunol Res. 2016;2016:1376595.

    PubMed  PubMed Central  Google Scholar 

  161. Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 2013;10(3):230–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Suck G, Odendahl M, Nowakowska P, et al. NK-92: an ‘off-the-shelf therapeutic’for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol Immunother. 2016;65(4):485–92.

    CAS  PubMed  Google Scholar 

  163. Klingemann H, Boissel L, Toneguzzo F. Natural killer cells for immunotherapy–advantages of the NK-92 cell line over blood NK cells. Front Immunol. 2016;7:91.

    PubMed  PubMed Central  Google Scholar 

  164. Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 1994;8(4):652–8.

    CAS  PubMed  Google Scholar 

  165. Ferrari de Andrade L, Kumar S, et al. Inhibition of MICA and MICB shedding elicits NK-cell-mediated immunity against tumors resistant to cytotoxic T cells. Cancer Immunol Res. 2020;8(6):769–80.

    PubMed  Google Scholar 

  166. Valipour B, Velaei K, Abedelahi A, Karimipour M, Darabi M, Charoudeh HN. NK cells: an attractive candidate for cancer therapy. J Cell Physiol. 2019;234(11):19352–65.

    CAS  PubMed  Google Scholar 

  167. Zhang C, Liu Y. Targeting NK cell checkpoint receptors or molecules for cancer immunotherapy. Front Immunol. 2020;11:1179.

    Google Scholar 

  168. Lachota M, Vincenti M, Winiarska M, Boye K, Zagożdżon R, Malmberg KJ. Prospects for NK cell therapy of sarcoma. Cancers. 2020;12(12):3719.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Qian X, Wang X, Jin H. Cell transfer therapy for cancer: past, present, and future. J Immunol Res. 2014;2014: 525913.

    PubMed  PubMed Central  Google Scholar 

  170. Tay SS, Carol H, Biro M. TriKEs and BiKEs join CARs on the cancer immunotherapy highway. Hum Vaccin Immunother. 2016;12(11):2790–6.

    PubMed  PubMed Central  Google Scholar 

  171. Tabata R, Chi S, Yuda J, Minami Y. Emerging immunotherapy for acute myeloid leukemia. Int J Mol Sci. 2021;22(4):1944.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Cichocki F, Bjordahl R, Gaidarova S, et al. iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo tumor control in concert with T cells and anti-PD-1 therapy. Sci Transl Med. 2020;12(568):5618.

    Google Scholar 

  173. FT500 as Monotherapy and in Combination With Immune Checkpoint Inhibitors in Subjects With Advanced Solid Tumors. https://clinicaltrials.gov/ct2/show/NCT03841110?term=NCT03841110&draw=2&rank=1

  174. FT536 Monotherapy and in Combination With Monoclonal Antibodies in Advanced Solid Tumors. https://clinicaltrials.gov/ct2/show/NCT05395052?term=NCT05395052&draw=1&rank=1

  175. Chen X, Han J, Chu J, et al. A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget. 2016;7(19):27764.

    PubMed  PubMed Central  Google Scholar 

  176. Liu Y, Zhou Y, Huang KH, et al. Targeting epidermal growth factor-overexpressing triple-negative breast cancer by natural killer cells expressing a specific chimeric antigen receptor. Cell Prolif. 2020;53(8): e12858.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Hu Z. Tissue factor as a new target for CAR-NK cell immunotherapy of triple-negative breast cancer. Sci Rep. 2020;10(1):2815.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. CAR-pNK Cell Immunotherapy in MUC1 Positive Relapsed or Refractory Solid Tumor. https://clinicaltrials.gov/ct2/show/NCT02839954?term=NCT02839954&draw=2&rank=1

  179. Matosevic S. Viral and nonviral engineering of natural killer cells as emerging adoptive cancer immunotherapies. J Immunol Res. 2018;2018:4054815.

    PubMed  PubMed Central  Google Scholar 

  180. Simonetta F, Alvarez M, Negrin RS. Natural killer cells in graft-versus-host-disease after allogeneic hematopoietic cell transplantation. Front Immunol. 2017;8:465.

    PubMed  PubMed Central  Google Scholar 

  181. Motohashi S. The role of regenerative invariant NKT cells in cancer immunotherapy for head and neck cancer. Per Med Universe. 2022;11:14–9.

    Google Scholar 

  182. Mazinani M, Rahbarizadeh F. New cell sources for CAR-based immunotherapy. Biomark Res. 2023;11(1):49.

    PubMed  PubMed Central  Google Scholar 

  183. Liu X, Li L, Si F, et al. NK and NKT cells have distinct properties and functions in cancer. Oncogene. 2021;40(27):4521–37.

    CAS  PubMed  Google Scholar 

  184. Hadiloo K, Tahmasebi S, Esmaeilzadeh A. CAR-NKT cell therapy: a new promising paradigm of cancer immunotherapy. Cancer Cell Int. 2023;23(1):86.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Gebremeskel S, Nelson A, Walker B, et al. Natural killer T cell immunotherapy combined with oncolytic vesicular stomatitis virus or reovirus treatments differentially increases survival in mouse models of ovarian and breast cancer metastasis. J Immunother Cancer. 2021;9(3): e002096.

    PubMed  PubMed Central  Google Scholar 

  186. Heczey A, Xu X, Courtney AN, et al. Anti-GD2 CAR-NKT cells in relapsed or refractory neuroblastoma: updated phase 1 trial interim results. Nat Med. 2023;29(6):1379–88.

    CAS  PubMed  Google Scholar 

  187. Zhang Y, Schmidt-Wolf IG. Ten-year update of the international registry on cytokine-induced killer cells in cancer immunotherapy. J Cell Physiol. 2020;235(12):9291–303.

    CAS  PubMed  Google Scholar 

  188. Guo Y, Han W. Cytokine-induced killer (CIK) cells: from basic research to clinical translation. Chin J Cancer. 2015;34(3):99–107.

    CAS  PubMed  Google Scholar 

  189. Hombach AA, Rappl G, Abken H. Arming cytokine-induced killer cells with chimeric antigen receptors: CD28 outperforms combined CD28–OX40 “super-stimulation.” Mol Ther. 2013;21(12):2268–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Wongkajornsilp A, Htwe KSS, Sawatpiboon N, Duangsa-ard S, Kasetsinsombat K. The induction of iNKT cells and CIK cells toward anti-tumor phenotypes. Cancer Res. 2019;79(13 Supplement):4141.

    Google Scholar 

  191. Sharma A, Schmidt-Wolf IG. 30 years of CIK cell therapy: recapitulating the key breakthroughs and future perspective. J Exp Clin Cancer Res. 2021;40(1):388.

    PubMed  PubMed Central  Google Scholar 

  192. Duan H, Ji N, Zhao L, Shi Q, Qi Y, Qi Q. Cytokine-induced killer cells (CIK) from healthy donors for treatment of advanced breast cancer. Int J Clin Exp Med. 2018;11(12):13436–41.

    CAS  Google Scholar 

  193. Li M, Wang Y, Wei F, et al. Efficiency of cytokine-induced killer cells in combination with chemotherapy for triple-negative breast cancer. J Breast Cancer. 2018;21(2):150–7.

    PubMed  PubMed Central  Google Scholar 

  194. Pan K, Guan X-X, Li Y-Q, et al. Clinical activity of adjuvant cytokine-induced killer cell immunotherapy in patients with post-mastectomy triple-negative breast cancer. Clin Cancer Res. 2014;20(11):3003–11.

    CAS  PubMed  Google Scholar 

  195. Hu J, Hu J, Liu X, Hu C, Li M, Han W. Effect and safety of cytokine-induced killer (CIK) cell immunotherapy in patients with breast cancer: a meta-analysis. Medicine. 2017;96(42): e8310.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. A Study of Combinations of D-CIK Immunotherapy And Anti-PD-1 In Refractory Solid Tumors. https://classic.clinicaltrials.gov/ct2/show/NCT02886897?term=cytokine-induced+killer&cond=Breast+Cancer&phase=04&draw=2&rank=1

  197. Merker M, Wagner J, Kreyenberg H, et al. ERBB2-CAR-engineered cytokine-induced killer cells exhibit both CAR-mediated and innate immunity against high-risk rhabdomyosarcoma. Front Immunol. 2020;11: 581468.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Magnani CF, Gaipa G, Lussana F, et al. Sleeping beauty-engineered CAR T cells achieve antileukemic activity without severe toxicities. J Clin Invest. 2020;130(11):6021–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Ren X, Ma W, Lu H, et al. Modification of cytokine-induced killer cells with chimeric antigen receptors (CARs) enhances antitumor immunity to epidermal growth factor receptor (EGFR)-positive malignancies. Cancer Immunol Immunother. 2015;64:1517–29.

    CAS  PubMed  Google Scholar 

  200. Mehta AK, Kadel S, Townsend MG, Oliwa M, Guerriero JL. Macrophage biology and mechanisms of immune suppression in breast cancer. Front Immunol. 2021;12: 643771.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. CAR-macrophages for the Treatment of HER2 Overexpressing Solid Tumors. https://clinicaltrials.gov/ct2/show/NCT04660929?term=NCT04660929&draw=2&rank=1

  202. Cohort Study to Determine the Antitumor Activity of New CAR-macrophages in Breast Cancer Patients' Derived Organoids (CARMA). https://clinicaltrials.gov/ct2/show/NCT05007379?term=NCT05007379&draw=2&rank=1

  203. Li WM, Zhou LL, Zheng M, Fang J. Selection of metastatic breast cancer cell-specific aptamers for the capture of CTCs with a metastatic phenotype by cell-SELEX. Mol Ther Nucleic Acids. 2018;12:707–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Han J, Gao L, Wang J, Wang J. Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. J Cancer. 2020;11(23):6902–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhou G, Wilson G, Hebbard L, et al. Aptamers: a promising chemical antibody for cancer therapy. Oncotarget. 2016;7(12):13446–63.

    PubMed  PubMed Central  Google Scholar 

  206. Liu M, Yu X, Chen Z, et al. Aptamer selection and applications for breast cancer diagnostics and therapy. J Nanobiotechnol. 2017;15(1):81.

    Google Scholar 

  207. Yang S, Li H, Xu L, et al. Oligonucleotide aptamer-mediated precision therapy of hematological malignancies. Mol Ther Nucleic Acids. 2018;13:164–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Kim DM, Kim M, Park HB, Kim KS, Kim DE. Anti-MUC1/CD44 dual-aptamer-conjugated liposomes for cotargeting breast cancer cells and cancer stem cells. ACS Appl Bio Mater. 2019;2(10):4622–33.

    CAS  PubMed  Google Scholar 

  209. Camorani S, Passariello M, Agnello L, et al. Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. J Exp Clin Cancer Res. 2020;39(1):180.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Yang S, Wen J, Li H, et al. Aptamer-engineered natural killer cells for cell-specific adaptive immunotherapy. Small. 2019;15(22): e1900903.

    PubMed  PubMed Central  Google Scholar 

  211. Zhang D, Zheng Y, Lin Z, et al. Equipping natural killer cells with specific targeting and checkpoint blocking aptamers for enhanced adoptive immunotherapy in solid tumors. Angew Chem Int Ed Engl. 2020;59(29):12022–8.

    CAS  PubMed  Google Scholar 

  212. Chen Z, Zeng Z, Wan Q, Liu X, Qi J, Zu Y. Targeted immunotherapy of triple-negative breast cancer by aptamer-engineered NK cells. Biomaterials. 2022;280: 121259.

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors did not receive any funds from any organization for the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Writing-original draft preparation, SK; conceptualization, EV and RJ-S; review and editing, RJ-S, EV, and JRW; English language editing, JRW; supervision, EV and RJ-S; and illustration, SK. All authors read the last version of manuscript and approved it for publication.

Corresponding authors

Correspondence to Elham Vojoudi or Reza Jafari-Shakib.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest related to this work.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarz, S., Wall, J.R., Keshavarz, S. et al. Breast cancer immunotherapy: a comprehensive review. Clin Exp Med 23, 4431–4447 (2023). https://doi.org/10.1007/s10238-023-01177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01177-z

Keywords

Navigation