Skip to main content

Advertisement

Log in

Chronicling the 3-year evolution of the COVID-19 pandemic: analysis of disease management, characteristics of major variants, and impacts on pathogenicity

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Announced on December 31, 2019, the novel coronavirus arising in Wuhan City, Hubei Province resulted in millions of cases and lives lost. Following intense tracking, coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization (WHO) in 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of COVID-19 and the continuous evolution of the virus has given rise to several variants. In this review, a comprehensive analysis of the response to the pandemic over the first three-year period is provided, focusing on disease management, development of vaccines and therapeutics, and identification of variants. The transmissibility and pathogenicity of SARS-CoV-2 variants including Alpha, Beta, Gamma, Delta, and Omicron are compared. The binding characteristics of the SARS-CoV-2 spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor and reproduction numbers are evaluated. The effects of major variants on disease severity, hospitalisation, and case-fatality rates are outlined. In addition to the spike protein, open reading frames mutations are investigated. We also compare the pathogenicity of SARS-CoV-2 with SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Overall, this study highlights the strengths and weaknesses of the global response to the pandemic, as well as the importance of prevention and preparedness. Monitoring the evolution of SARS-CoV-2 is critical in identifying and potentially predicting the health outcomes of concerning variants as they emerge. The ultimate goal would be a position in which existing vaccines and therapeutics could be adapted to suit new variants in as close to real-time as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stenseth NC, Dharmarajan G, Li R, Shi ZL, Yang R, Gao GF. Lessons learnt from the COVID-19 pandemic. Front Public Health. 2021;9:694705. https://doi.org/10.3389/fpubh.2021.694705.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lurie N, Keusch GT, Dzau VJ. Urgent lessons from COVID 19: why the world needs a standing, coordinated system and sustainable financing for global research and development. The Lancet. 2021;397(10280):1229–36. https://doi.org/10.1016/S0140-6736(21)00503-1.

    Article  CAS  Google Scholar 

  3. Singhal T. The emergence of omicron: challenging times are here again! Indian J Pediatr. 2022;89(5):490–6. https://doi.org/10.1007/s12098-022-04077-4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Voskarides K. SARS-CoV-2: tracing the origin, tracking the evolution. BMC Med Genomics. 2022;15(1):62. https://doi.org/10.1186/s12920-022-01208-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jacob Jobin J, Vasudevan K, Pragasam Agila K, Gunasekaran K, Veeraraghavan B, Mutreja A. Evolutionary tracking of SARS-CoV-2 genetic variants highlights an intricate balance of stabilizing and destabilizing mutations. MBio. 2021;12(4):e01188-21. https://doi.org/10.1128/mBio.01188-21.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Koelle K, Martin MA, Antia R, Lopman B, Dean NE. The changing epidemiology of SARS-CoV-2. Science. 2022;375(6585):1116–21. https://doi.org/10.1126/science.abm4915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swerdlow DL, Finelli L. Preparation for possible sustained transmission of 2019 novel coronavirus: lessons from previous epidemics. JAMA. 2020;323(12):1129–30. https://doi.org/10.1001/jama.2020.1960.

    Article  CAS  PubMed  Google Scholar 

  8. Inglesby TV. Public health measures and the reproduction number of SARS-CoV-2. JAMA. 2020;323(21):2186–7. https://doi.org/10.1001/jama.2020.7878.

    Article  PubMed  Google Scholar 

  9. Gostic KM, McGough L, Baskerville EB, et al. Practical considerations for measuring the effective reproductive number, Rt. PLOS Comput Biol. 2020;16(12):e1008409. https://doi.org/10.1371/journal.pcbi.1008409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Grunewald M, Perlman S. Coronaviruses: an updated overview of their replication and pathogenesis. Methods Mol Biol. 2020;2203:1–29. https://doi.org/10.1007/978-1-0716-0900-2_1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou Z, Qiu Y, Ge X. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order. Anim Dis. 2021;1(1):5. https://doi.org/10.1186/s44149-021-00005-9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alsafi RT. Lessons from SARS-CoV, MERS-CoV, and SARS-CoV-2 infections: what we know so far. Can J Infect Dis Med Microbiol. 2022;2022:1156273. https://doi.org/10.1155/2022/1156273.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–44. https://doi.org/10.1038/s41564-020-0695-z.

    Article  CAS  Google Scholar 

  14. Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res. 2020;21(1):224. https://doi.org/10.1186/s12931-020-01479-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74. https://doi.org/10.1016/s0140-6736(20)30251-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep. 2020;19:100682. https://doi.org/10.1016/j.genrep.2020.100682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Groot RJ, Baker Susan C, Baric Ralph S, et al. Commentary: Middle East Respiratory Syndrome Coronavirus (MERS-CoV): announcement of the coronavirus study group. J Virol. 2013;87(14):7790–2. https://doi.org/10.1128/JVI.01244-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300(5624):1394–9. https://doi.org/10.1126/science.1085952.

    Article  CAS  PubMed  Google Scholar 

  19. Yang D, Leibowitz JL. The structure and functions of coronavirus genomic 3′ and 5′ ends. Virus Res. 2015;206:120–33. https://doi.org/10.1016/j.virusres.2015.02.025.

    Article  CAS  PubMed  Google Scholar 

  20. Farrag MA, Amer HM, Bhat R, Almajhdi FN. Sequence and phylogentic analysis of MERS-CoV in Saudi Arabia, 2012–2019. Virol J. 2021;18(1):90. https://doi.org/10.1186/s12985-021-01563-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620. https://doi.org/10.1038/s41467-020-15562-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215–20. https://doi.org/10.1038/s41586-020-2180-5.

    Article  CAS  PubMed  Google Scholar 

  23. Yadav R, Chaudhary JK, Jain N, et al. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells. 2021. https://doi.org/10.3390/cells10040821.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mei H, Kosakovsky Pond S, Nekrutenko A. Stepwise evolution and exceptional conservation of ORF1a/b overlap in coronaviruses. Mol Biol Evol. 2021;38(12):5678–84. https://doi.org/10.1093/molbev/msab265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Subissi L, Imbert I, Ferron F, et al. SARS-CoV ORF1b-encoded nonstructural proteins 12–16: replicative enzymes as antiviral targets. Antiviral Res. 2014;101:122–30. https://doi.org/10.1016/j.antiviral.2013.11.006.

    Article  CAS  PubMed  Google Scholar 

  26. Redondo N, Zaldívar-López S, Garrido JJ, Montoya M. SARS-CoV-2 accessory proteins in viral pathogenesis: knowns and unknowns. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.708264.

    Article  PubMed  PubMed Central  Google Scholar 

  27. World Health Organization. Coronavirus disease (COVID-19) Weekly Epidemiological Updates and Monthly Operational Updates (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. Accessed 03-04-2023.

  28. Centers for Disease Control and Prevention. CDC Museum COVID-19 Timeline (2020). https://www.cdc.gov/museum/timeline/covid19.html. Accessed 03-04-2023.

  29. U.S. Food and Drug Administration. Coronavirus Disease 2019 (COVID-19) (2020). https://www.fda.gov/emergency-preparedness-and-response/counterterrorism-and-emerging-threats/coronavirus-disease-2019-covid-19. Accessed 03-04-2023.

  30. Gavi The Vaccine Alliance. The COVID-19 vaccine race (2020). https://www.gavi.org/vaccineswork/covid-19-vaccine-race#phases. Accessed 03-04-2023.

  31. World Health Organization. Novel Coronavirus (2019-nCoV): situation report, 1. Geneva: World Health Organization; 2020. p. 1–5.

    Google Scholar 

  32. Worobey M, Levy JI, Malpica Serrano L, et al. The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science. 2022;377(6609):951–9. https://doi.org/10.1126/science.abp8715.

    Article  CAS  PubMed  Google Scholar 

  33. Allam Z. The first 50 days of COVID-19: A detailed chronological timeline and extensive review of literature documenting the pandemic. 2020. p. 1–7.

  34. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/s0140-6736(20)30183-5.

    Article  CAS  PubMed  Google Scholar 

  35. Okada P, Buathong R, Phuygun S, et al. Early transmission patterns of coronavirus disease 2019 (COVID-19) in travellers from Wuhan to Thailand, January 2020. Euro Surveill. 2019. https://doi.org/10.2807/1560-7917.Es.2020.25.8.2000097.

    Article  Google Scholar 

  36. World Health Organization. Novel Coronavirus (2019-nCoV): situation report, 11. Geneva: World Health Organization; 2020. p. 1–8.

    Google Scholar 

  37. World Health Organization. Novel Coronavirus (2019-nCoV): situation report, 22. Geneva: World Health Organization; 2020. p. 1–7.

    Google Scholar 

  38. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 51. Geneva: World Health Organization; 2020. p. 1–9.

    Google Scholar 

  39. Wu S, Neill R, De Foo C, et al. Aggressive containment, suppression, and mitigation of covid-19: lessons learnt from eight countries. BMJ. 2021;375:67508. https://doi.org/10.1136/bmj-2021-067508.

    Article  Google Scholar 

  40. World Health Organization. Novel Coronavirus (2019-nCoV): situation report, 3. Geneva: World Health Organization; 2020. p. 1–7.

    Google Scholar 

  41. World Health Organization. Mission summary: WHO Field Visit to Wuhan, China 20–21 January 2020 (2020). https://www.who.int/china/news/detail/22-01-2020-field-visit-wuhan-china-jan-2020. Accessed.

  42. World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020. p. 1–40.

  43. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 137. Geneva: World Health Organization; 2020. p. 1–17.

    Google Scholar 

  44. Morawska L, Milton DK. It is time to address airborne transmission of coronavirus disease 2019 (COVID-19). Clin Infect Dis. 2020;71(9):2311–3. https://doi.org/10.1093/cid/ciaa939.

    Article  CAS  PubMed  Google Scholar 

  45. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 66. Geneva: World Health Organization; 2020. p. 1–11.

    Google Scholar 

  46. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 172. Geneva: World Health Organization; 2020. p. 1–19.

    Google Scholar 

  47. The Lancet Infectious Diseases. The COVID-19 infodemic. Lancet Infect Dis. 2020;20(8):875. https://doi.org/10.1016/S1473-3099(20)30565-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. World Health Organization. 1st WHO Infodemiology Conference (2020). https://www.who.int/teams/epi-win/infodemic-management/1st-who-infodemiology-conference. Accessed 03-04-2023.

  49. Islam MS, Sarkar T, Khan SH, et al. COVID-19-related infodemic and its impact on public health: a global social media analysis. Am J Trop Med Hyg. 2020;103(4):1621–9. https://doi.org/10.4269/ajtmh.20-0812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 160. Geneva: World Health Organization; 2020. p. 1–16.

    Google Scholar 

  51. Doherty Institute. Doherty Institute scientists first to grow and share 2019 novel coronavirus (2020). https://www.doherty.edu.au/news-events/news/coronavirus. Accessed 03-04-2023.

  52. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 41. Geneva: World Health Organization; 2020. p. 1–7.

    Google Scholar 

  53. Ng YL, Salim CK, Chu JJH. Drug repurposing for COVID-19: approaches, challenges and promising candidates. Pharmacol Ther. 2021;228:107930. https://doi.org/10.1016/j.pharmthera.2021.107930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 60. Geneva: World Health Organization; 2020. p. 1–9.

    Google Scholar 

  55. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19—18 March 2020 (2020). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---18-march-2020.

  56. WHO Solidarity Trial Consortium. Remdesivir and three other drugs for hospitalised patients with COVID-19: final results of the WHO Solidarity randomised trial and updated meta-analyses. The Lancet. 2022;399(10339):1941–53. https://doi.org/10.1016/S0140-6736(22)00519-0.

    Article  Google Scholar 

  57. U.S. Food and Drug Administration. Coronavirus (COVID-19) update: FDA revokes emergency use authorization for chloroquine and hydroxychloroquine (2020). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-chloroquine-and. Accessed 03-04-2023.

  58. U.S. Food and Drug Administration. Coronavirus (COVID-19) Update: FDA issues emergency use authorization for potential COVID-19 treatment (2020). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-issues-emergency-use-authorization-potential-covid-19-treatment. Accessed 03-04-2023.

  59. The RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2020;384(8):693–704. https://doi.org/10.1056/NEJMoa2021436.

    Article  Google Scholar 

  60. Hwang YC, Lu RM, Su SC, et al. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. J Biomed Sci. 2022;29(1):1. https://doi.org/10.1186/s12929-021-00784-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Physician to the President—The White House. Memorandum from the President’s Physician. 2020.

  62. U.S. Food and Drug Administration. FDA Takes Key Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for First COVID-19 Vaccine (2020). https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-covid-19-issuing-emergency-use-authorization-first-covid-19. Accessed 03-04-2023.

  63. U.S. Food and Drug Administration. FDA Takes Additional Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for Second COVID-19 Vaccine (2020). https://www.fda.gov/news-events/press-announcements/fda-takes-additional-action-fight-against-covid-19-issuing-emergency-use-authorization-second-covid. Accessed 03-04-2023.

  64. AstraZeneca. AstraZeneca’s COVID-19 vaccine authorised for emergency supply in the UK. 2020.

  65. World Health Organization. WHO issues its first emergency use validation for a COVID-19 vaccine and emphasizes need for equitable global access (2020). https://www.who.int/news/item/31-12-2020-who-issues-its-first-emergency-use-validation-for-a-covid-19-vaccine-and-emphasizes-need-for-equitable-global-access. Accessed.

  66. World Health Organization. WHO calls for further studies, data on origin of SARS-CoV-2 virus, reiterates that all hypotheses remain open (2021). https://www.who.int/news/item/30-03-2021-who-calls-for-further-studies-data-on-origin-of-sars-cov-2-virus-reiterates-that-all-hypotheses-remain-open. Accessed 03-04-2023.

  67. World Health Organization. WHO-convened Global Study of Origins of SARS-CoV-2: China Part (Joint WHO-China Study) 2021. p. 1–120.

  68. World Health Organization. Weekly epidemiological update on COVID-19—25 May 2021. Geneva: World Health Organization; 2021. p. 1–31.

    Google Scholar 

  69. World Health Organization. New international expert panel to address the emergence and spread of zoonotic diseases (2021). https://www.who.int/news/item/20-05-2021-new-international-expert-panel-to-address-the-emergence-and-spread-of-zoonotic-diseases. Accessed 03-04-2023.

  70. World Health Organization. Weekly epidemiological update on COVID-19—20 July 2021. Geneva: World Health Organization; 2021. p. 1–21.

    Google Scholar 

  71. World Health Organization. WHO Director-General's opening remarks at the Member State Information Session on Origins (2021). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-member-state-information-session-on-origins. Accessed 03-04-2023.

  72. World Health Organization. Weekly epidemiological update—16 February 2021. Geneva: World Health Organization; 2021. p. 1–26.

    Book  Google Scholar 

  73. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19—7 October 2021 (2021). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---7-october-2021. Accessed 03-04-2023.

  74. World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021 (2021). https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1. Accessed 03-04-2023.

  75. World Health Organization. More than 150 countries engaged in COVID-19 vaccine global access facility (2020). https://www.who.int/news-room/detail/15-07-2020-more-than-150-countries-engaged-in-covid-19-vaccine-global-access-facility. Accessed 03-04-2023.

  76. World Health Organization. Weekly epidemiological update—22 December 2020. Geneva: World Health Organization; 2020. p. 1–21.

    Google Scholar 

  77. World Health Organization. COVAX Announces additional deals to access promising COVID-19 vaccine candidates; plans global rollout starting Q1 2021 (2020). https://www.who.int/news/item/18-12-2020-covax-announces-additional-deals-to-access-promising-covid-19-vaccine-candidates-plans-global-rollout-starting-q1-2021. Accessed 03-04-2023.

  78. World Health Organization. Director-General's opening remarks at the media briefing on COVID-19—7 June 2021 (2021). https://www.who.int/director-general/speeches/detail/director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-7-june-2021. Accessed 03-04-2023.

  79. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19—14 September 2021 (2021). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---14-september-2021. Accessed 03-04-2023.

  80. World Health Organization. WHO Director-General's opening remarks at the 2021 SADC seminar on TRIPS waiver—23 November 2021 (2021). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-2021-sadc-seminar-on-trips-waiver---23-november-2021. Accessed 03-04-2023.

  81. U.S. Food and Drug Administration. Coronavirus (COVID-19) update: November 9, 2020 (2020). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-november-9-2020. Accessed 03-04-2023.

  82. U.S. Food and Drug Administration. Coronavirus (COVID-19) update: FDA revokes emergency use authorization for monoclonal antibody bamlanivimab (2021). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-monoclonal-antibody-bamlanivimab. Accessed 03-04-2023.

  83. U.S. Food and Drug Administration. Coronavirus (COVID-19) Update: August 31, 2021 (2021). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-august-31-2021. Accessed 03-04-2023.

  84. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 - 8 December 2021 (2021). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---8-december-2021. Accessed 03-04-2023.

  85. World Health Organization. Global Advisory Committee on Vaccine Safety (GACVS) review of latest evidence of rare adverse blood coagulation events with AstraZeneca COVID-19 Vaccine (Vaxzevria and Covishield) (2021). https://www.who.int/news/item/16-04-2021-global-advisory-committee-on-vaccine-safety-(gacvs)-review-of-latest-evidence-of-rare-adverse-blood-coagulation-events-with-astrazeneca-covid-19-vaccine-(vaxzevria-and-covishield). Accessed 03-04-2023.

  86. World Health Organization. Statement of the COVID-19 subcommittee of the WHO Global Advisory Committee on Vaccine Safety (GACVS) on safety signals related to the Johnson & Johnson/Janssen COVID-19 vaccine (2021). https://www.who.int/news/item/19-05-2021-statement-gacvs-safety-johnson-johnson-janssen-covid-19-vaccine. Accessed 03-04-2023.

  87. U.S. Food and Drug Administration. Coronavirus (COVID-19) Update: June 25, 2021 (2021). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-june-25-2021. Accessed 03-04-2023.

  88. U.S. Food and Drug Administration. Coronavirus (COVID-19) Update: July 13, 2021 (2021). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-july-13-2021. Accessed 03-04-2023.

  89. World Health Organization. Weekly epidemiological update on COVID-19—17 August 2021. Geneva: World Health Organization; 2021. p. 1–16.

    Google Scholar 

  90. World Health Organization. Interim statement on heterologous priming for COVID-19 vaccines (2021). https://www.who.int/news/item/10-08-2021-interim-statement-on-heterologous-priming-for-covid-19-vaccines. Accessed 03-04-2023.

  91. World Health Organization. Interim statement on dose-sparing strategies for COVID-19 vaccines (fractionated vaccine doses) (2021). https://www.who.int/news/item/10-08-2021-interim-statement-on-dose-sparing-strategies-for-covid-19-vaccines-(fractionated-vaccine-doses). Accessed 03-04-2023.

  92. World Health Organization. Interim statement on COVID-19 vaccine booster doses (2021). https://www.who.int/news/item/10-08-2021-interim-statement-on-covid-19-vaccine-booster-doses. Accessed 03-04-2023.

  93. World Health Organization. Weekly epidemiological update on COVID-19—10 August 2021. Geneva: World Health Organization; 2021. p. 1–22.

    Google Scholar 

  94. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19—4 August 2021 (2021). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-4-august-2021. Accessed 03-04-2023.

  95. World Health Organization. WHO Director-General's opening remarks at the Member State Information Session on the Omicron variant of SARS-CoV-2 (2021). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-member-state-information-session-on-the-omicron-variant-of-sars-cov-2. Accessed 03-04-2023.

  96. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19—1 February 2022 (2022). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---1-february-2022. Accessed 03-04-2023.

  97. World Health Organization. WHO Director-General's opening remarks at the 10th meeting of the Access to COVID-19 Tools Accelerator Facilitation Council—26 April 2022 (2022). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-10th-meeting-of-the-access-to-covid-19-tools-accelerator-facilitation-council---26-april-2022. Accessed 03-04-2023.

  98. World Health Organization. WHO Director-General's opening remarks at the 13th meeting of the IHR Emergency Committee on COVID-19 pandemic—13 October 2022 (2022). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-13th-meeting-of-the-ihr-emergency-committee-on-covid-19-pandemic---13-october-2022. Accessed 03-04-2023.

  99. World Health Organization. WHO Director-General's opening remarks at the media briefing—2 December 2022 (2022). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing---2-december-2022. Accessed 03-04-2023.

  100. World Health Organization. WHO Director-General's opening remarks at the media briefing—21 December 2022 (2022). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing---21-december-2022. Accessed 03-04-2023.

  101. World Health Organization. WHO meets with Chinese officials on current COVID-19 situation (2022). https://www.who.int/news/item/30-12-2022-who-meets-with-chinese-officials-on-current-covid-19-situation. Accessed 03-04-2023.

  102. World Health Organization. WHO Director-General's opening remarks at the WHO press conference—26 April 2022 (2022). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-who-press-conference-26-April-2022. Accessed 03-04-2023.

  103. World Health Organization. WHO Director-General's opening remarks at the media briefing—5 October 2022 (2022). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-5-october-2022. Accessed 03-04-2023.

  104. World Health Organization. Strategic Advisory Group of Experts on Immunization (SAGE)—October 2022 (2022). https://www.who.int/news-room/events/detail/2022/10/03/default-calendar/sage_meeting_october_2022. Accessed 03-04-2023.

  105. World Health Organization. WHO Director-General's statement at the press conference following IHR Emergency Committee regarding the multi-country outbreak of monkeypox—23 July 2022 (2022). https://www.who.int/director-general/speeches/detail/who-director-general-s-statement-on-the-press-conference-following-IHR-emergency-committee-regarding-the-multi--country-outbreak-of-monkeypox--23-july-2022. Accessed 03-04-2023.

  106. World Health Organization. WHO Director-General's opening remarks at the COVID-19 media briefing—27 July 2022 (2022). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-covid-19-media-briefing--27-july-2022. Accessed 03-04-2023.

  107. World Health Organization. WHO Director-General's opening remarks at the media briefing—22 September 2022 (2022). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing--22-september-2022. Accessed 03-04-2023.

  108. World Health Organization. WHO Director-General's opening remarks at the WHO, WIPO, WTO Joint Technical Symposium on the COVID-19 Pandemic: Response, preparedness, resilience—16 December 2022 (2022). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-who--wipo--wto-joint-technical-symposium-on-the-covid-19-pandemic--response--preparedness--resilience---16-december-2022. Accessed 03-04-2023.

  109. U.S. Food and Drug Administration. Coronavirus (COVID-19) Update: FDA recommends inclusion of omicron BA.4/5 component for COVID-19 vaccine booster doses (2022). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-recommends-inclusion-omicron-ba45-component-covid-19-vaccine-booster. Accessed 03-04-2023.

  110. U.S. Food and Drug Administration. Coronavirus (COVID-19) update: FDA limits use of certain monoclonal antibodies to treat COVID-19 due to the omicron variant (2022). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-limits-use-certain-monoclonal-antibodies-treat-covid-19-due-omicron. Accessed 03-04-2023.

  111. U.S. Food and Drug Administration. FDA updates Sotrovimab emergency use authorization (2022). https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-sotrovimab-emergency-use-authorization. Accessed 03-04-2023.

  112. U.S. Food and Drug Administration. Coronavirus (COVID-19) update: FDA authorizes new monoclonal antibody for treatment of COVID-19 that retains activity against omicron variant (2022). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-new-monoclonal-antibody-treatment-covid-19-retains. Accessed 03-04-2023.

  113. Myers LC, Liu VX. The COVID-19 pandemic strikes again and again and again. JAMA Netw Open. 2022;5(3):e221760. https://doi.org/10.1001/jamanetworkopen.2022.1760.

    Article  PubMed  Google Scholar 

  114. World Health Organization. Tracking SARS-CoV-2 variants (2020). https://www.who.int/activities/tracking-SARS-CoV-2-variants. Accessed 03-04-2023.

  115. World Health Organization. Weekly epidemiological update—9 February 2021. Geneva: World Health Organization; 2021. p. 1–28.

    Book  Google Scholar 

  116. World Health Organization. WHO announces simple, easy-to-say labels for SARS-CoV-2 Variants of Interest and Concern (2021). https://www.who.int/news/item/31-05-2021-who-announces-simple-easy-to-say-labels-for-sars-cov-2-variants-of-interest-and-concern. Accessed 03-04-2023.

  117. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–3. https://doi.org/10.1126/science.abb2507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815. https://doi.org/10.1006/jmbi.1993.1626.

    Article  CAS  PubMed  Google Scholar 

  119. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. https://doi.org/10.1002/jcc.20084.

    Article  CAS  PubMed  Google Scholar 

  120. Schrödinger Release 2022-2: Schrödinger, LLC, New York, NY, 2021.

  121. Isabel S, Graña-Miraglia L, Gutierrez JM, et al. Evolutionary and structural analyses of SARS-CoV-2 D614G spike protein mutation now documented worldwide. Sci Rep. 2020;10(1):14031. https://doi.org/10.1038/s41598-020-70827-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Phan T. Genetic diversity and evolution of SARS-CoV-2. Infect Genet Evolut. 2020;81:104260. https://doi.org/10.1016/j.meegid.2020.104260.

    Article  CAS  Google Scholar 

  123. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 185. Geneva: World Health Organization; 2020. p. 1–20.

    Google Scholar 

  124. Zhang L, Jackson CB, Mou H, et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun. 2020;11(1):6013. https://doi.org/10.1038/s41467-020-19808-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Plante JA, Liu Y, Liu J, et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2021;592(7852):116–21. https://doi.org/10.1038/s41586-020-2895-3.

    Article  CAS  PubMed  Google Scholar 

  126. Zhou B, Thao TTN, Hoffmann D, et al. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature. 2021;592(7852):122–7. https://doi.org/10.1038/s41586-021-03361-1.

    Article  CAS  PubMed  Google Scholar 

  127. Yurkovetskiy L, Wang X, Pascal KE, et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell. 2020;183(3):739-51.e8. https://doi.org/10.1016/j.cell.2020.09.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. World Health Organization. Weekly epidemiological update—10 November 2020. Geneva: World Health Organization; 2020. p. 1–23.

    Book  Google Scholar 

  129. Lassaunière R, Fonager J, Rasmussen M, et al. In vitro characterization of fitness and convalescent antibody neutralization of SARS-CoV-2 Cluster 5 variant emerging in mink at Danish farms. Front Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.698944.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhou J, Peacock TP, Brown JC, et al. Mutations that adapt SARS-CoV-2 to mink or ferret do not increase fitness in the human airway. Cell Rep. 2022;38(6):110344. https://doi.org/10.1016/j.celrep.2022.110344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. World Health Organization. Weekly epidemiological update—29 December 2020. Geneva: World Health Organization; 2020. p. 1–17.

    Google Scholar 

  132. World Health Organization. Weekly epidemiological update—12 January 2021. Geneva: World Health Organization; 2021. p. 1–20.

    Book  Google Scholar 

  133. Istifli ES, Netz PA, Sihoglu Tepe A, Sarikurkcu C, Tepe B. Understanding the molecular interaction of SARS-CoV-2 spike mutants with ACE2 (angiotensin converting enzyme 2). J Biomol Struct Dyn. 2022;40(23):12760–71. https://doi.org/10.1080/07391102.2021.1975569.

    Article  CAS  PubMed  Google Scholar 

  134. Ramanathan M, Ferguson ID, Miao W, Khavari PA. SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity. Lancet Infect Dis. 2021;21(8):1070. https://doi.org/10.1016/S1473-3099(21)00262-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Campbell F, Archer B, Laurenson-Schafer H, et al. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Euro Surveill. 2021. https://doi.org/10.2807/1560-7917.Es.2021.26.24.2100509.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Faria NR, Mellan TA, Whittaker C, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021;372(6544):815–21. https://doi.org/10.1126/science.abh2644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hogan CA, Jassem AN, Sbihi H, et al. Rapid increase in SARS-CoV-2 P.1 lineage leading to codominance with B.1.1.7 lineage, British Columbia, Canada, January–April 2021. Emerg Infect Dis. 2021;27(11):2802–9. https://doi.org/10.3201/eid2711.211190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Han P, Li L, Liu S, et al. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell. 2022;185(4):630-40.e10. https://doi.org/10.1016/j.cell.2022.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pondé RAA. Physicochemical effect of the N501Y, E484K/Q, K417N/T, L452R and T478K mutations on the SARS-CoV-2 spike protein RBD and its influence on agent fitness and on attributes developed by emerging variants of concern. Virology. 2022;572:44–54. https://doi.org/10.1016/j.virol.2022.05.003.

    Article  CAS  PubMed  Google Scholar 

  140. Liu Y, Liu J, Plante KS, et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature. 2022;602(7896):294–9. https://doi.org/10.1038/s41586-021-04245-0.

    Article  CAS  PubMed  Google Scholar 

  141. Chen C, Boorla VS, Banerjee D, et al. Computational prediction of the effect of amino acid changes on the binding affinity between SARS-CoV-2 spike RBD and human ACE2. Proc Natl Acad Sci. 2021;118(42):e2106480118. https://doi.org/10.1073/pnas.2106480118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Starr TN, Greaney AJ, Hilton SK, et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell. 2020;182(5):1295-310.e20. https://doi.org/10.1016/j.cell.2020.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mannar D, Saville JW, Zhu X, et al. Structural analysis of receptor binding domain mutations in SARS-CoV-2 variants of concern that modulate ACE2 and antibody binding. Cell Rep. 2021;37(12):110156. https://doi.org/10.1016/j.celrep.2021.110156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409–24. https://doi.org/10.1038/s41579-021-00573-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. World Health Organization. Weekly epidemiological update on COVID-19—3 August 2021. Geneva: World Health Organization; 2021. p. 1–14.

    Google Scholar 

  146. Tian D, Sun Y, Zhou J, Ye Q. The global epidemic of the SARS-CoV-2 delta variant, key spike mutations and immune escape. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.751778.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Mahmood TB, Hossan MI, Mahmud S, et al. Missense mutations in spike protein of SARS-CoV-2 delta variant contribute to the alteration in viral structure and interaction with hACE2 receptor. Immun Inflam Dis. 2022;10(9):e683. https://doi.org/10.1002/iid3.683.

    Article  CAS  Google Scholar 

  148. Cheng MH, Krieger JM, Banerjee A, et al. Impact of new variants on SARS-CoV-2 infectivity and neutralization: a molecular assessment of the alterations in the spike-host protein interactions. iScience. 2022;25(3):103939. https://doi.org/10.1016/j.isci.2022.103939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pitsillou E, Liang JJ, Beh RC, Hung A, Karagiannis TC. Molecular dynamics simulations highlight the altered binding landscape at the spike-ACE2 interface between the Delta and Omicron variants compared to the SARS-CoV-2 original strain. Comput Biol Med. 2022;149:106035. https://doi.org/10.1016/j.compbiomed.2022.106035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gellenoncourt S, Saunders N, Robinot R, et al. The spike-stabilizing D614G mutation interacts with S1/S2 cleavage site mutations to promote the infectious potential of SARS-CoV-2 variants. J Virol. 2022;96(19):e0130122. https://doi.org/10.1128/jvi.01301-22.

    Article  CAS  PubMed  Google Scholar 

  151. Peacock TP, Goldhill DH, Zhou J, et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol. 2021;6(7):899–909. https://doi.org/10.1038/s41564-021-00908-w.

    Article  CAS  PubMed  Google Scholar 

  152. Rajah MM, Hubert M, Bishop E, et al. SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced Spike-mediated syncytia formation. Embo J. 2021;40(24):e108944–99. https://doi.org/10.15252/embj.2021108944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bálint G, Vörös-Horváth B, Széchenyi A. Omicron: increased transmissibility and decreased pathogenicity. Signal Transduct Target Ther. 2022;7(1):151. https://doi.org/10.1038/s41392-022-01009-8.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Suzuki R, Yamasoba D, Kimura I, et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature. 2022;603(7902):700–5. https://doi.org/10.1038/s41586-022-04462-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-92.e6. https://doi.org/10.1016/j.cell.2020.02.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhou D, Dejnirattisai W, Supasa P, et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell. 2021;184(9):2348-61.e6. https://doi.org/10.1016/j.cell.2021.02.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Supasa P, Zhou D, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell. 2021;184(8):2201-11.e7. https://doi.org/10.1016/j.cell.2021.02.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dejnirattisai W, Zhou D, Supasa P, et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell. 2021;184(11):2939-54.e9. https://doi.org/10.1016/j.cell.2021.03.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang Y, Liu C, Zhang C, et al. Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies. Nat Commun. 2022;13(1):871. https://doi.org/10.1038/s41467-022-28528-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Liu C, Ginn HM, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell. 2021;184(16):4220-36.e13. https://doi.org/10.1016/j.cell.2021.06.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mannar D, Saville JW, Sun Z, et al. SARS-CoV-2 variants of concern: spike protein mutational analysis and epitope for broad neutralization. Nat Commun. 2022;13(1):4696. https://doi.org/10.1038/s41467-022-32262-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bayarri-Olmos R, Jarlhelt I, Johnsen LB, et al. Functional effects of receptor-binding domain mutations of SARS-CoV-2 B.1.351 and P.1 variants. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.757197.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022;608(7923):593–602. https://doi.org/10.1038/s41586-022-04980-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cao Y, Song W, Wang L, et al. Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75. Cell Host Microbe. 2022;30(11):1527-39.e5. https://doi.org/10.1016/j.chom.2022.09.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Xiao J, Hu J, He G, et al. The time-varying transmission dynamics of COVID-19 and synchronous public health interventions in China. Int J Infect Dis. 2021;103:617–23. https://doi.org/10.1016/j.ijid.2020.11.005.

    Article  CAS  PubMed  Google Scholar 

  166. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020. https://doi.org/10.1093/jtm/taaa021.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395(10225):689–97. https://doi.org/10.1016/s0140-6736(20)30260-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sheikhi F, Yousefian N, Tehranipoor P, Kowsari Z. Estimation of the basic reproduction number of Alpha and Delta variants of COVID-19 pandemic in Iran. PLoS ONE. 2022;17(5):10265489. https://doi.org/10.1371/journal.pone.0265489.

    Article  CAS  Google Scholar 

  169. Liu Y, Rocklöv J. The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. J Travel Med. 2021. https://doi.org/10.1093/jtm/taab124.

    Article  PubMed  PubMed Central  Google Scholar 

  170. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19–29 December 2021 (2021). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-press-conference---29-december-2021. Accessed 03-04-2023.

  171. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19—22 December 2021 (2021). https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---22-december-2021. Accessed 03-04-2023.

  172. Mannar D, Saville JW, Zhu X, et al. SARS-CoV-2 Omicron variant: antibody evasion and cryo-EM structure of spike protein–ACE2 complex. Science. 2022;375(6582):760–4. https://doi.org/10.1126/science.abn7760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Shrestha LB, Foster C, Rawlinson W, Tedla N, Bull RA. Evolution of the SARS-CoV-2 omicron variants BA1 to BA5: implications for immune escape and transmission. Rev Med Virol. 2022;32(5):e2381. https://doi.org/10.1002/rmv.2381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang A-R, Shi W-Q, Liu K, et al. Epidemiology and evolution of Middle East respiratory syndrome coronavirus, 2012–2020. Infect Dis Poverty. 2021;10(1):66. https://doi.org/10.1186/s40249-021-00853-0.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A novel coronavirus emerging in China—key questions for impact assessment. N Engl J Med. 2020;382(8):692–4. https://doi.org/10.1056/NEJMp2000929.

    Article  CAS  PubMed  Google Scholar 

  176. World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV) (2022). https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov). Accessed 03-04-2023.

  177. Wong LR, Zheng J, Sariol A, et al. Middle East respiratory syndrome coronavirus Spike protein variants exhibit geographic differences in virulence. Proc Natl Acad Sci U S A. 2021. https://doi.org/10.1073/pnas.2102983118.

    Article  PubMed  PubMed Central  Google Scholar 

  178. World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). https://www.who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-mers#tab=tab_1. Accessed 2023.

  179. World Health Organization. Consensus document on the epidemiology of severe acute respiratory syndrome (SARS). Geneva: World Health Organization; 2003.

    Google Scholar 

  180. Cao Y, Hiyoshi A, Montgomery S. COVID-19 case-fatality rate and demographic and socioeconomic influencers: worldwide spatial regression analysis based on country-level data. BMJ Open. 2020;10(11):e043560. https://doi.org/10.1136/bmjopen-2020-043560.

    Article  PubMed  PubMed Central  Google Scholar 

  181. World Health Organization Regional Office for the Eastern Mediterranean. COVID-19 situation updates for week 31 (31 July–6 August 2022). 2022.

  182. Kartsonaki C, Baillie JK, Barrio NG, et al. Characteristics and outcomes of an international cohort of 600 000 hospitalized patients with COVID-19. Int J Epidemiol. 2023. https://doi.org/10.1093/ije/dyad012.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Veneti L, Seppälä E, Larsdatter Storm M, et al. Increased risk of hospitalisation and intensive care admission associated with reported cases of SARS-CoV-2 variants B.1.1.7 and B.1.351 in Norway, December 2020–May 2021. PLoS ONE. 2021;16(10):e0258513. https://doi.org/10.1371/journal.pone.0258513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Radvak P, Kwon HJ, Kosikova M, et al. SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains. Nat Commun. 2021;12(1):6559. https://doi.org/10.1038/s41467-021-26803-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bai Y, He Q, Yang J, et al. B.1.351 SARS-CoV-2 variant exhibits higher virulence but less viral shedding than that of the ancestral strain in young nonhuman primates. Microbiol Spectr. 2022;10(5):e02263-e2322. https://doi.org/10.1128/spectrum.02263-22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Freitas ARR, Beckedorff OA, Cavalcanti LPG, et al. The emergence of novel SARS-CoV-2 variant P.1 in Amazonas (Brazil) was temporally associated with a change in the age and sex profile of COVID-19 mortality: a population based ecological study. Lancet Region Health Am. 2021. https://doi.org/10.1016/j.lana.2021.100021.

    Article  Google Scholar 

  187. Twohig KA, Nyberg T, Zaidi A, et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis. 2022;22(1):35–42. https://doi.org/10.1016/S1473-3099(21)00475-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ong SWX, Chiew CJ, Ang LW, et al. Clinical and virological features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern: a retrospective cohort study comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1617.2 (Delta). Clin Infect Dis. 2022;75(1):e1128–36. https://doi.org/10.1093/cid/ciab721.

    Article  PubMed  Google Scholar 

  189. Sheikh A, McMenamin J, Taylor B, Robertson C. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. The Lancet. 2021;397(10293):2461–2. https://doi.org/10.1016/S0140-6736(21)01358-1.

    Article  CAS  Google Scholar 

  190. Shuai H, Chan JF-W, Hu B, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature. 2022;603(7902):693–9. https://doi.org/10.1038/s41586-022-04442-5.

    Article  CAS  PubMed  Google Scholar 

  191. Hyams C, Challen R, Marlow R, et al. Severity of Omicron (B.1.1.529) and Delta (B.1.617.2) SARS-CoV-2 infection among hospitalised adults: a prospective cohort study in Bristol, United Kingdom. Lancet Region Health Europe. 2023. https://doi.org/10.1016/j.lanepe.2022.100556.

    Article  Google Scholar 

  192. Abbasian MH, Mahmanzar M, Rahimian K, et al. Global landscape of SARS-CoV-2 mutations and conserved regions. J Transl Med. 2023;21(1):152. https://doi.org/10.1186/s12967-023-03996-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Chen J, Malone B, Llewellyn E, et al. Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. Cell. 2020;182(6):1560-73.e13. https://doi.org/10.1016/j.cell.2020.07.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Chen D-Y, Chin CV, Kenney D, et al. Spike and nsp6 are key determinants of SARS-CoV-2 Omicron BA.1 attenuation. Nature. 2023;615(7950):143–50. https://doi.org/10.1038/s41586-023-05697-2.

    Article  CAS  PubMed  Google Scholar 

  195. Sun X, Liu Y, Huang Z, et al. SARS-CoV-2 non-structural protein 6 triggers NLRP3-dependent pyroptosis by targeting ATP6AP1. Cell Death Differ. 2022;29(6):1240–54. https://doi.org/10.1038/s41418-021-00916-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hodcroft EB. CoVariants: SARS-CoV-2 mutations and variants of interest. (2021). https://covariants.org/. Accessed 03-04-2023.

  197. Hulo C, de Castro E, Masson P, et al. ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res. 2011;39(Database issue):D576–82. https://doi.org/10.1093/nar/gkq901.

    Article  CAS  PubMed  Google Scholar 

  198. Gangavarapu K, Latif AA, Mullen JL, et al. Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nat Methods. 2023. https://doi.org/10.1038/s41592-023-01769-3.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Khare S, Gurry C, Freitas L, et al. GISAID’s role in pandemic response. China CDC Wkly. 2021;3(49):1049–51. https://doi.org/10.46234/ccdcw2021.255.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Menachery VD, Mitchell HD, Cockrell AS, et al. MERS-CoV accessory ORFs play key role for infection and pathogenesis. MBio. 2017. https://doi.org/10.1128/mBio.00665-17.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Ye Z, Wong CK, Li P, Xie Y. A SARS-CoV protein, ORF-6, induces caspase-3 mediated, ER stress and JNK-dependent apoptosis. Biochim Biophys Acta. 2008;1780(12):1383–7. https://doi.org/10.1016/j.bbagen.2008.07.009.

    Article  CAS  PubMed  Google Scholar 

  202. Shi CS, Nabar NR, Huang NN, Kehrl JH. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov. 2019;5:101. https://doi.org/10.1038/s41420-019-0181-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Shi CS, Qi HY, Boularan C, et al. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J Immunol. 2014;193(6):3080–9. https://doi.org/10.4049/jimmunol.1303196.

    Article  CAS  PubMed  Google Scholar 

  204. Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA, Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol. 2007;81(2):548–57. https://doi.org/10.1128/jvi.01782-06.

    Article  CAS  PubMed  Google Scholar 

  205. Freundt EC, Yu L, Goldsmith CS, et al. The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death. J Virol. 2010;84(2):1097–109. https://doi.org/10.1128/jvi.01662-09.

    Article  CAS  PubMed  Google Scholar 

  206. Moodley K, Cengiz N, Domingo A, et al. Ethics and governance challenges related to genomic data sharing in southern Africa: the case of SARS-CoV-2. Lancet Glob Health. 2022;10(12):e1855–9. https://doi.org/10.1016/s2214-109x(22)00417-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Altindis E. Inequitable COVID-19 vaccine distribution and the intellectual property rights prolong the pandemic. Expert Rev Vaccines. 2022;21(4):427–30. https://doi.org/10.1080/14760584.2022.2014819.

    Article  CAS  PubMed  Google Scholar 

  208. Ravinetto R, Caillet C, Zaman MH, et al. Preprints in times of COVID19: the time is ripe for agreeing on terminology and good practices. BMC Med Ethics. 2021;22(1):106. https://doi.org/10.1186/s12910-021-00667-7.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Hernandez RG, Hagen L, Walker K, O’Leary H, Lengacher C. The COVID-19 vaccine social media infodemic: healthcare providers’ missed dose in addressing misinformation and vaccine hesitancy. Hum Vaccin Immunother. 2021;17(9):2962–4. https://doi.org/10.1080/21645515.2021.1912551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Puri N, Coomes EA, Haghbayan H, Gunaratne K. Social media and vaccine hesitancy: new updates for the era of COVID-19 and globalized infectious diseases. Hum Vaccin Immunother. 2020;16(11):2586–93. https://doi.org/10.1080/21645515.2020.1780846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Sheng-Chia C, Sushila M, Nicholas T, et al. Lessons from countries implementing find, test, trace, isolation and support policies in the rapid response of the COVID-19 pandemic: a systematic review. BMJ Open. 2021;11(7):e047832. https://doi.org/10.1136/bmjopen-2020-047832.

    Article  Google Scholar 

  212. Lau YY, Dulebenets MA, Yip HT, Tang YM. Healthcare supply chain management under COVID-19 Settings: the existing practices in Hong Kong and the United States. Healthcare (Basel). 2022. https://doi.org/10.3390/healthcare10081549.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Søvold LE, Naslund JA, Kousoulis AA, et al. Prioritizing the mental health and well-being of healthcare workers: an urgent global public health priority. Front Public Health. 2021. https://doi.org/10.3389/fpubh.2021.679397.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

EP and RCB are supported by an Australian Government Research Training Program Scholarship. We thank the National Computing Infrastructure (NCI), and the Pawsey Supercomputing Centre in Australia (funded by the Australian Government). Further, we thank the Spartan High Performance Computing service (University of Melbourne), and the Partnership for Advanced Computing in Europe (PRACE) for awarding the access to Piz Daint, hosted at the Swiss National Supercomputing Centre (CSCS), Switzerland.

Author information

Authors and Affiliations

Authors

Contributions

TCK and AH conceptualized the aims and methodology, were involved in supervision, and production of the first draft of the manuscript. EP and YY curated data. RCB created the online interactive timeline. EP, YY, RCB, and JJL performed data analysis and produced the first draft of the manuscript. All authors contributed to editing and reviewing the manuscript.

Corresponding author

Correspondence to Tom C. Karagiannis.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1499 kb)

Supplementary file2 (PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitsillou, E., Yu, Y., Beh, R.C. et al. Chronicling the 3-year evolution of the COVID-19 pandemic: analysis of disease management, characteristics of major variants, and impacts on pathogenicity. Clin Exp Med 23, 3277–3298 (2023). https://doi.org/10.1007/s10238-023-01168-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01168-0

Keywords

Navigation