Skip to main content

Coronaviruses: An Updated Overview of Their Replication and Pathogenesis

  • Protocol
  • First Online:
Coronaviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2203))

Abstract

Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. CoVs cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs, and upper respiratory tract and kidney disease in chickens to lethal human respiratory infections. Most recently, the novel coronavirus, SARS-CoV-2, which was first identified in Wuhan, China in December 2019, is the cause of a catastrophic pandemic, COVID-19, with more than 8 million infections diagnosed worldwide by mid-June 2020. Here we provide a brief introduction to CoVs discussing their replication, pathogenicity, and current prevention and treatment strategies. We will also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV), which are relevant for understanding COVID-19.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kazi L, Lissenberg A, Watson R, de Groot RJ, Weiss SR (2005) Expression of hemagglutinin esterase protein from recombinant mouse hepatitis virus enhances neurovirulence. J Virol 79(24):15064–15073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Haan CA, Masters PS, Shen X, Weiss S, Rottier PJ (2002) The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology 296(1):177–189

    Article  PubMed  CAS  Google Scholar 

  3. Cruz JL et al (2011) Coronavirus gene 7 counteracts host defenses and modulates virus virulence. PLoS Pathog 7(6):e1002090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tangudu C, Olivares H, Netland J, Perlman S, Gallagher T (2007) Severe acute respiratory syndrome coronavirus protein 6 accelerates murine coronavirus infections. J Virol 81(3):1220–1229

    Article  CAS  PubMed  Google Scholar 

  5. Azhar EI et al (2014) Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med 370(26):2499–2505

    Article  CAS  PubMed  Google Scholar 

  6. Menachery VD et al (2017) MERS-CoV accessory ORFs play key role for infection and pathogenesis. MBio 8(4):e00665-17

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nakagawa K, Narayanan K, Wada M, Makino S (2018) Inhibition of stress granule formation by Middle East respiratory syndrome coronavirus 4a accessory protein facilitates viral translation, leading to efficient virus replication. J Virol 92(20):e00902-18

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rabouw HH et al (2016) Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses. PLoS Pathog 12(10):e1005982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yang Y et al (2015) Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets. Sci Rep 5:17554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Canton J et al (2018) MERS-CoV 4b protein interferes with the NF-kappaB-dependent innate immune response during infection. PLoS Pathog 14(1):e1006838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhao L et al (2012) Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe 11(6):607–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barcena M et al (2009) Cryo-electron tomography of mouse hepatitis virus: insights into the structure of the coronavirion. Proc Natl Acad Sci U S A 106(2):582–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neuman BW et al (2006) Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol 80(16):7918–7928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beniac DR, Andonov A, Grudeski E, Booth TF (2006) Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol 13(8):751–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Delmas B, Laude H (1990) Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol 64(11):5367–5375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bosch BJ, van der Zee R, de Haan CA, Rottier PJ (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77(16):8801–8811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Millet JK, Whittaker GR (2014) Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A 111(42):15214–15219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abraham S, Kienzle TE, Lapps W, Brian DA (1990) Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology 176(1):296–301

    Article  CAS  PubMed  Google Scholar 

  19. Luytjes W et al (1987) Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161(2):479–487

    Article  CAS  PubMed  Google Scholar 

  20. Walls AC et al (2016) Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531(7592):114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kirchdoerfer RN et al (2016) Pre-fusion structure of a human coronavirus spike protein. Nature 531(7592):118–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walls AC et al (2016) Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Mol Biol 23(10):899–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuan Y et al (2017) Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 8:15092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiong X et al (2018) Glycan shield and fusion activation of a Deltacoronavirus spike glycoprotein fine-tuned for enteric infections. J Virol 92(4)

    Google Scholar 

  25. Shang J et al (2018) Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins. PLoS Pathog 14(4):e1007009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sturman LS, Holmes KV, Behnke J (1980) Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J Virol 33(1):449–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rottier P, Brandenburg D, Armstrong J, van der Zeijst B, Warren G (1984) Assembly in vitro of a spanning membrane protein of the endoplasmic reticulum: the E1 glycoprotein of coronavirus mouse hepatitis virus A59. Proc Natl Acad Sci U S A 81(5):1421–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuo L, Hurst-Hess KR, Koetzner CA, Masters PS (2016) Analyses of coronavirus assembly interactions with interspecies membrane and nucleocapsid protein chimeras. J Virol 90(9):4357–4368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jacobs L, van der Zeijst BA, Horzinek MC (1986) Characterization and translation of transmissible gastroenteritis virus mRNAs. J Virol 57(3):1010–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nal B et al (2005) Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol 86(Pt 5):1423–1434

    Article  CAS  PubMed  Google Scholar 

  31. de Haan CA et al (1998) Structural requirements for O-glycosylation of the mouse hepatitis virus membrane protein. J Biol Chem 273(45):29905–29914

    Article  PubMed  Google Scholar 

  32. Laude H, Gelfi J, Lavenant L, Charley B (1992) Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by the coronavirus transmissible gastroenteritis virus. J Virol 66(2):743–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. de Haan CA et al (2003) The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain. Virology 312(2):395–406

    Article  PubMed  CAS  Google Scholar 

  34. Locker JK, Rose JK, Horzinek MC, Rottier PJ (1992) Membrane assembly of the triple-spanning coronavirus M protein. Individual transmembrane domains show preferred orientation. J Biol Chem 267(30):21911–21918

    Article  CAS  PubMed  Google Scholar 

  35. Machamer CE, Rose JK (1987) A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J Cell Biol 105(3):1205–1214

    Article  CAS  PubMed  Google Scholar 

  36. Kapke PA et al (1988) The amino-terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation. Virology 165(2):367–376

    Article  CAS  PubMed  Google Scholar 

  37. Neuman BW et al (2011) A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 174(1):11–22

    Article  CAS  PubMed  Google Scholar 

  38. Kuo L, Masters PS (2013) Functional analysis of the murine coronavirus genomic RNA packaging signal. J Virol 87(9):5182–5192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Masters PS (2006) The molecular biology of coronaviruses. Adv Virus Res 66:193–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vennema H et al (1996) Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J 15(8):2020–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Corse E, Machamer CE (2002) The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting. J Virol 76(3):1273–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ruch TR, Machamer CE (2012) A single polar residue and distinct membrane topologies impact the function of the infectious bronchitis coronavirus E protein. PLoS Pathog 8(5):e1002674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilson L, McKinlay C, Gage P, Ewart G (2004) SARS coronavirus E protein forms cation-selective ion channels. Virology 330(1):322–331

    Article  CAS  PubMed  Google Scholar 

  44. Pervushin K et al (2009) Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathog 5(7):e1000511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. DeDiego ML et al (2007) A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol 81(4):1701–1713

    Article  CAS  PubMed  Google Scholar 

  46. Fischer F, Stegen CF, Masters PS, Samsonoff WA (1998) Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. J Virol 72(10):7885–7894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nieto-Torres JL et al (2014) Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog 10(5):e1004077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Castano-Rodriguez C et al (2018) Role of severe acute respiratory syndrome coronavirus Viroporins E, 3a, and 8a in replication and pathogenesis. MBio 9(3):e02325–e02317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chang CK et al (2006) Modular organization of SARS coronavirus nucleocapsid protein. J Biomed Sci 13(1):59–72

    Article  CAS  PubMed  Google Scholar 

  50. Hurst KR, Koetzner CA, Masters PS (2009) Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein. J Virol 83(14):7221–7234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stohlman SA, Lai MM (1979) Phosphoproteins of murine hepatitis viruses. J Virol 32(2):672–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grunewald ME, Fehr AR, Athmer J, Perlman S (2018) The coronavirus nucleocapsid protein is ADP-ribosylated. Virology 517:62–68

    Article  CAS  PubMed  Google Scholar 

  53. Stohlman SA et al (1988) Specific interaction between coronavirus leader RNA and nucleocapsid protein. J Virol 62(11):4288–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hurst KR, Koetzner CA, Masters PS (2013) Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex. J Virol 87(16):9159–9172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Klausegger A et al (1999) Identification of a coronavirus hemagglutinin-esterase with a substrate specificity different from those of influenza C virus and bovine coronavirus. J Virol 73(5):3737–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cornelissen LA et al (1997) Hemagglutinin-esterase, a novel structural protein of torovirus. J Virol 71(7):5277–5286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lissenberg A et al (2005) Luxury at a cost? Recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro. J Virol 79(24):15054–15063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kubo H, Yamada YK, Taguchi F (1994) Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol 68(9):5403–5410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wong SK, Li W, Moore MJ, Choe H, Farzan M (2004) A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem 279(5):3197–3201

    Article  CAS  PubMed  Google Scholar 

  60. Wang N et al (2013) Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res 23(8):986–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lu G et al (2013) Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500(7461):227–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bonavia A, Zelus BD, Wentworth DE, Talbot PJ, Holmes KV (2003) Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J Virol 77(4):2530–2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qian Z et al (2015) Identification of the receptor-binding domain of the spike glycoprotein of human betacoronavirus HKU1. J Virol 89(17):8816–8827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin HX et al (2008) Identification of residues in the receptor-binding domain (RBD) of the spike protein of human coronavirus NL63 that are critical for the RBD-ACE2 receptor interaction. J Gen Virol 89(Pt 4):1015–1024

    Article  CAS  PubMed  Google Scholar 

  65. Godet M, Grosclaude J, Delmas B, Laude H (1994) Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol 68(12):8008–8016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Williams RK, Jiang GS, Snyder SW, Frana MF, Holmes KV (1990) Purification of the 110-kilodalton glycoprotein receptor for mouse hepatitis virus (MHV)-A59 from mouse liver and identification of a nonfunctional, homologous protein in MHV-resistant SJL/J mice. J Virol 64(8):3817–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Williams RK, Jiang GS, Holmes KV (1991) Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci U S A 88(13):5533–5536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dveksler GS et al (1991) Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. J Virol 65(12):6881–6891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Taguchi F, Hirai-Yuki A (2012) Mouse hepatitis virus receptor as a determinant of the mouse susceptibility to MHV infection. Front Microbiol 3:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Delmas B et al (1992) Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357(6377):417–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yeager CL et al (1992) Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357(6377):420–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tresnan DB, Levis R, Holmes KV (1996) Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol 70(12):8669–8674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li W et al (2018) Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proc Natl Acad Sci U S A 115(22):E5135–E5143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang B et al (2018) Porcine Deltacoronavirus engages the transmissible gastroenteritis virus functional receptor porcine aminopeptidase N for infectious cellular entry. J Virol 92(12):e00318–e00318

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Delmas B, Gelfi J, Sjostrom H, Noren O, Laude H (1993) Further characterization of aminopeptidase-N as a receptor for coronaviruses. Adv Exp Med Biol 342:293–298

    Article  CAS  PubMed  Google Scholar 

  76. Benbacer L, Kut E, Besnardeau L, Laude H, Delmas B (1997) Interspecies aminopeptidase-N chimeras reveal species-specific receptor recognition by canine coronavirus, feline infectious peritonitis virus, and transmissible gastroenteritis virus. J Virol 71(1):734–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Delmas B et al (1994) Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site. J Virol 68(8):5216–5224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li W et al (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426(6965):450–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hamming I et al (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203(2):631–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hofmann H et al (2005) Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A 102(22):7988–7993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Raj VS et al (2013) Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495(7440):251–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li F (2015) Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol 89(4):1954–1964

    Article  PubMed  CAS  Google Scholar 

  83. Belouzard S, Chu VC, Whittaker GR (2009) Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 106(14):5871–5876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kleine-Weber H, Elzayat MT, Hoffmann M, Pohlmann S (2018) Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein. Sci Rep 8(1):16597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Park JE et al (2016) Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proc Natl Acad Sci U S A 113(43):12262–12267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. White JM, Whittaker GR (2016) Fusion of enveloped viruses in endosomes. Traffic 17(6):593–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chinese SMEC (2004) Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303(5664):1666–1669

    Article  CAS  Google Scholar 

  88. Cotten M et al (2013) Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study. Lancet 382(9909):1993–2002

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kim DW et al (2016) Variations in spike glycoprotein gene of MERS-CoV, South Korea, 2015. Emerg Infect Dis 22(1):100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim Y et al (2016) Spread of mutant Middle East respiratory syndrome coronavirus with reduced affinity to human CD26 during the South Korean outbreak. MBio 7(2):e00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Earnest JT et al (2017) The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathog 13(7):e1006546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Baranov PV et al (2005) Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology 332(2):498–510

    Article  CAS  PubMed  Google Scholar 

  93. Brierley I, Digard P, Inglis SC (1989) Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57(4):537–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Araki K et al (2010) Pathogenic virus-specific T cells cause disease during treatment with the calcineurin inhibitor FK506: implications for transplantation. J Exp Med 207(11):2355–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ziebuhr J, Snijder EJ, Gorbalenya AE (2000) Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81(Pt 4):853–879

    Article  CAS  PubMed  Google Scholar 

  96. Mielech AM, Chen Y, Mesecar AD, Baker SC (2014) Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities. Virus Res 194:184–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Anand K et al (2002) Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J 21(13):3213–3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stobart CC, Lee AS, Lu X, Denison MR (2012) Temperature-sensitive mutants and revertants in the coronavirus nonstructural protein 5 protease (3CLpro) define residues involved in long-distance communication and regulation of protease activity. J Virol 86(9):4801–4810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang H et al (2005) Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 3(10):e324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Neuman BW, Chamberlain P, Bowden F, Joseph J (2014) Atlas of coronavirus replicase structure. Virus Res 194:49–66

    Article  CAS  PubMed  Google Scholar 

  101. Oostra M et al (2008) Topology and membrane anchoring of the coronavirus replication complex: not all hydrophobic domains of nsp3 and nsp6 are membrane spanning. J Virol 82(24):12392–12405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kanjanahaluethai A, Chen Z, Jukneliene D, Baker SC (2007) Membrane topology of murine coronavirus replicase nonstructural protein 3. Virology 361(2):391–401

    Article  CAS  PubMed  Google Scholar 

  103. Neuman BW (2016) Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles. Antivir Res 135:97–107

    Article  CAS  PubMed  Google Scholar 

  104. Lei J, Kusov Y, Hilgenfeld R (2018) Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antivir Res 149:58–74

    Article  CAS  PubMed  Google Scholar 

  105. Neuman BW et al (2008) Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J Virol 82(11):5279–5294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hurst KR, Ye R, Goebel SJ, Jayaraman P, Masters PS (2010) An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA. J Virol 84(19):10276–10288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Keane SC, Giedroc DP (2013) Solution structure of mouse hepatitis virus (MHV) nsp3a and determinants of the interaction with MHV nucleocapsid (N) protein. J Virol 87(6):3502–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li C et al (2016) Viral macro domains reverse protein ADP-Ribosylation. J Virol 90(19):8478–8486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fehr AR, Jankevicius G, Ahel I, Perlman S (2018) Viral macrodomains: unique mediators of viral replication and pathogenesis. Trends Microbiol 26(7):598–610

    Article  CAS  PubMed  Google Scholar 

  110. Smith EC et al (2015) Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity. J Virol 89(12):6418–6426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Eckerle LD et al (2010) Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog 6(5):e1000896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Eckerle LD, Lu X, Sperry SM, Choi L, Denison MR (2007) High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol 81(22):12135–12144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Minskaia E et al (2006) Discovery of an RNA virus 3′ → 5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci U S A 103(13):5108–5113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen Y et al (2009) Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci U S A 106(9):3484–3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Decroly E et al (2008) Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity. J Virol 82(16):8071–8084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kindler E, Thiel V, Weber F (2016) Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res 96:219–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Deng X et al (2017) Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proc Natl Acad Sci U S A 114(21):E4251–E4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kindler E et al (2017) Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathog 13(2):e1006195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Snijder EJ et al (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sethna PB, Hofmann MA, Brian DA (1991) Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J Virol 65(1):320–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Brown CG, Nixon KS, Senanayake SD, Brian DA (2007) An RNA stem-loop within the bovine coronavirus nsp1 coding region is a cis-acting element in defective interfering RNA replication. J Virol 81(14):7716–7724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Guan BJ, Wu HY, Brian DA (2011) An optimal cis-replication stem-loop IV in the 5′ untranslated region of the mouse coronavirus genome extends 16 nucleotides into open reading frame 1. J Virol 85(11):5593–5605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu P et al (2009) Mouse hepatitis virus stem-loop 2 adopts a uYNMG(U)a-like tetraloop structure that is highly functionally tolerant of base substitutions. J Virol 83(23):12084–12093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Raman S, Bouma P, Williams GD, Brian DA (2003) Stem-loop III in the 5′ untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication. J Virol 77(12):6720–6730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu Q, Johnson RF, Leibowitz JL (2001) Secondary structural elements within the 3′ untranslated region of mouse hepatitis virus strain JHM genomic RNA. J Virol 75(24):12105–12113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Goebel SJ, Miller TB, Bennett CJ, Bernard KA, Masters PS (2007) A hypervariable region within the 3′ cis-acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis. J Virol 81(3):1274–1287

    Article  CAS  PubMed  Google Scholar 

  127. Williams GD, Chang RY, Brian DA (1999) A phylogenetically conserved hairpin-type 3′ untranslated region pseudoknot functions in coronavirus RNA replication. J Virol 73(10):8349–8355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hsue B, Masters PS (1997) A bulged stem-loop structure in the 3′ untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. J Virol 71(10):7567–7578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hsue B, Hartshorne T, Masters PS (2000) Characterization of an essential RNA secondary structure in the 3′ untranslated region of the murine coronavirus genome. J Virol 74(15):6911–6921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sawicki SG, Sawicki DL, Siddell SG (2007) A contemporary view of coronavirus transcription. J Virol 81(1):20–29

    Article  CAS  PubMed  Google Scholar 

  131. Wu CH, Chen PJ, Yeh SH (2014) Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription. Cell Host Microbe 16(4):462–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Keck JG et al (1987) RNA recombination of coronavirus. Adv Expt Med Biol 218:99–107

    Article  CAS  Google Scholar 

  133. Lai MM et al (1985) Recombination between nonsegmented RNA genomes of murine coronaviruses. J Virol 56(2):449–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kuo L, Godeke GJ, Raamsman MJ, Masters PS, Rottier PJ (2000) Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J Virol 74(3):1393–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Krijnse-Locker J, Ericsson M, Rottier PJM, Griffiths G (1994) Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the golgi complex requires only one vesicular transport step. J Cell Biol 124:55–70

    Article  CAS  PubMed  Google Scholar 

  136. Tooze J, Tooze S, Warren G (1984) Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions. Euro J Cell Biol 33(2):281–293

    CAS  Google Scholar 

  137. de Haan CA, Rottier PJ (2005) Molecular interactions in the assembly of coronaviruses. Adv Virus Res 64:165–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Bos EC, Luytjes W, van der Meulen HV, Koerten HK, Spaan WJM (1996) The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology 218:52–60

    Article  CAS  PubMed  Google Scholar 

  139. Siu YL et al (2008) The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol 82(22):11318–11330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Raamsman MJ et al (2000) Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J Virol 74(5):2333–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Corse E, Machamer CE (2000) Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. J Virol 74(9):4319–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Boscarino JA, Logan HL, Lacny JJ, Gallagher TM (2008) Envelope protein palmitoylations are crucial for murine coronavirus assembly. J Virol 82(6):2989–2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ye Y, Hogue BG (2007) Role of the coronavirus E viroporin protein transmembrane domain in virus assembly. J Virol 81(7):3597–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hurst KR et al (2005) A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein. J Virol 79(21):13285–13297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Athmer J et al (2018) Selective packaging in murine coronavirus promotes virulence by limiting type I interferon responses. MBio 9(3):e00272-18

    Article  PubMed  PubMed Central  Google Scholar 

  146. Wong HH et al (2015) Genome-wide screen reveals Valosin-containing protein requirement for coronavirus exit from endosomes. J Virol 89(21):11116–11128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhou P et al (2018) Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556(7700):255–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. de Groot-Mijnes JD, van Dun JM, van der Most RG, de Groot RJ (2005) Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease. J Virol 79(2):1036–1044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Saif LJ (2010) Bovine respiratory coronavirus. Vet Clin North Am Food Anim Pract 26(2):349–364

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ignjatovic J, Sapats S (2000) Avian infectious bronchitis virus. Rev Sci Tech 19(2):493–508

    Article  CAS  PubMed  Google Scholar 

  151. Mihindukulasuriya KA, Wu G, St Leger J, Nordhausen RW, Wang D (2008) Identification of a novel coronavirus from a beluga whale by using a panviral microarray. J Virol 82(10):5084–5088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. de Groot RJ et al (2013) Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group. J Virol 87(14):7790–7792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820

    Article  CAS  PubMed  Google Scholar 

  154. He B et al (2014) Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China. J Virol 88(12):7070–7082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Nga PT et al (2011) Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS Pathog 7(9):e1002215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lauber C et al (2012) Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses. Arch Virol 157(8):1623–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Saberi A, Gulyaeva AA, Brubacher JL, Newmark PA, Gorbalenya AE (2018) A planarian nidovirus expands the limits of RNA genome size. PLoS Pathog 14(11):e1007314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Levy GA et al (2000) Molecular and functional analysis of the human prothrombinase gene (HFGL2) and its role in viral hepatitis. Am J Pathol 156:1217–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lampert PW, Sims JK, Kniazeff AJ (1973) Mechanism of demyelination in JHM virus encephalomyelitis. Acta Neuropathol 24:76–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Weiner LP (1973) Pathogenesis of demyelination induced by a mouse hepatitis virus (JHM virus). Arch Neurol 28:298–303

    Article  CAS  PubMed  Google Scholar 

  161. Houtman JJ, Fleming JO (1996) Pathogenesis of mouse hepatitis virus-induced demyelination. J Neurovirol 2(6):361–376

    Article  CAS  PubMed  Google Scholar 

  162. Wang F, Stohlman SA, Fleming JO (1990) Demyelination induced by murine hepatitis virus JHM strain (MHV-4) is immunologically mediated. J Neuroimmunol 30:31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wu GF, Dandekar AA, Pewe L, Perlman S (2000) CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination. J Immunol 165:2278–2286

    Article  CAS  PubMed  Google Scholar 

  164. Wu GF, Perlman S (1999) Macrophage infiltration, but not apoptosis, is correlated with immune-mediated demyelination following murine infection with a neurotropic coronavirus. J Virol 73:8771–8780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wheeler DL, Sariol A, Meyerholz DK, Perlman S (2018) Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Invest 128(3):931–943

    Article  PubMed  PubMed Central  Google Scholar 

  166. McIntosh K, Becker WB, Chanock RM (1967) Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease. Proc Natl Acad Sci U S A 58:2268–2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bradburne AF, Bynoe ML, Tyrell DAJ (1967) Effects of a "new" human respiratory virus in volunteers. Br Med J 3:767–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hamre D, Procknow JJ (1966) A new virus isolated from the human respiratory tract. Proc Sco Exp Biol Med 121(1):190–193

    Article  CAS  Google Scholar 

  169. Woo PC et al (2005) Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79(2):884–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. van der Hoek L et al (2004) Identification of a new human coronavirus. Nat Med 10(4):368–373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Huynh J et al (2012) Evidence supporting a zoonotic origin of human coronavirus strain NL63. J Virol 86(23):12816–12825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jean A, Quach C, Yung A, Semret M (2013) Severity and outcome associated with human coronavirus OC43 infections among children. Pediatr Infect Dis J 32(4):325–329

    Article  PubMed  Google Scholar 

  173. van der Hoek L et al (2005) Croup is associated with the novel coronavirus NL63. PLoS Med 2(8):e240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Chibo D, Birch C (2006) Analysis of human coronavirus 229E spike and nucleoprotein genes demonstrates genetic drift between chronologically distinct strains. J Gen Virol 87(Pt 5):1203–1208

    Article  CAS  PubMed  Google Scholar 

  175. Vijgen L et al (2005) Circulation of genetically distinct contemporary human coronavirus OC43 strains. Virology 337(1):85–92

    Article  CAS  PubMed  Google Scholar 

  176. Arbour N, Day R, Newcombe J, Talbot PJ (2000) Neuroinvasion by human respiratory coronaviruses. J Virol 74(19):8913–8921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Peiris JS, Guan Y, Yuen KY (2004) Severe acute respiratory syndrome. Nat Med 10(12 Suppl):S88–S97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lau SK et al (2005) Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102(39):14040–14045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Li W et al (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310(5748):676–679

    Article  CAS  PubMed  Google Scholar 

  180. Ge XY et al (2013) Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503(7477):535–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Guan Y et al (2003) Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276–278

    Article  CAS  PubMed  Google Scholar 

  182. Peiris JS, Yuen KY, Osterhaus AD, Stohr K (2003) The severe acute respiratory syndrome. New Engl J Med 349(25):2431–2441

    Article  CAS  PubMed  Google Scholar 

  183. Christian MD, Poutanen SM, Loutfy MR, Muller MP, Low DE (2004) Severe acute respiratory syndrome. Clin Infect Dis 38(10):1420–1427

    Article  PubMed  Google Scholar 

  184. Nicholls JM et al (2003) Lung pathology of fatal severe acute respiratory syndrome. Lancet 361(9371):1773–1778

    Article  PubMed  PubMed Central  Google Scholar 

  185. Peiris JS et al (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361(9371):1767–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Spiegel M, Schneider K, Weber F, Weidmann M, Hufert FT (2006) Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells. J Gen Virol 87(Pt 7):1953–1960

    Article  CAS  PubMed  Google Scholar 

  187. Law HK et al (2005) Chemokine upregulation in SARS coronavirus infected human monocyte derived dendritic cells. Blood 106:2366–2376

    Article  CAS  PubMed  Google Scholar 

  188. Lau YL, Peiris JSM (2005) Pathogenesis of severe acute respiratory syndrome. Curr Opin Immunol 17:404–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Roberts A et al (2005) Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J Virol 79(9):5833–5838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhao J, Zhao J, Perlman S (2010) T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol 84(18):9318–9325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhao J, Zhao J, Legge K, Perlman S (2011) Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Invest 121(12):4921–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Aly M, Elrobh M, Alzayer M, Aljuhani S, Balkhy H (2017) Occurrence of the Middle East respiratory syndrome coronavirus (MERS-CoV) across the Gulf corporation council countries: four years update. PLoS One 12(10):e0183850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Choi WS et al (2016) Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea. Infect Chemother 48(2):118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ki M (2015) 2015 MERS outbreak in Korea: hospital-to-hospital transmission. Epidemiol Health 37:e2015033

    Article  PubMed  PubMed Central  Google Scholar 

  195. Conzade R et al (2018) Reported direct and indirect contact with dromedary camels among laboratory-confirmed MERS-CoV cases. Viruses 10(8):E425

    Article  PubMed  Google Scholar 

  196. Mohd HA, Al-Tawfiq JA, Memish ZA (2016) Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir. Virol J 13:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Memish ZA et al (2014) Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis 20(6):1012–1015

    Article  PubMed  PubMed Central  Google Scholar 

  198. van Boheemen S et al (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3(6):e00473–e00412

    PubMed  PubMed Central  Google Scholar 

  199. Anthony SJ et al (2017) Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. MBio 8(2):e00373–e00317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Li K et al (2017) Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc Natl Acad Sci U S A 114(15):E3119–E3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Agrawal AS et al (2015) Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease. J Virol 89(7):3659–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhao J et al (2014) Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci U S A 111(13):4970–4975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Cockrell AS et al (2016) A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat Microbiol 2:16226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Emery SL et al (2004) Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. Emerg Infect Dis 10(2):311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Gaunt ER, Hardie A, Claas EC, Simmonds P, Templeton KE (2010) Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol 48(8):2940–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Huang P et al (2018) A rapid and specific assay for the detection of MERS-CoV. Front Microbiol 9:1101

    Article  PubMed  PubMed Central  Google Scholar 

  207. Omrani AS et al (2014) Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis 14(11):1090–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Channappanavar R et al (2016) Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 19(2):181–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Channappanavar R et al (2019) IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest 130:3625–3639

    Article  Google Scholar 

  210. Wang L et al (2018) Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on the Middle East respiratory syndrome coronavirus spike glycoprotein to avoid neutralization escape. J Virol 92(10):e02002–e02017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Mo Y, Fisher D (2016) A review of treatment modalities for Middle East respiratory syndrome. J Antimicrob Chemother 71(12):3340–3350

    Article  CAS  PubMed  Google Scholar 

  212. Jordan B (2017) Vaccination against infectious bronchitis virus: a continuous challenge. Vet Microbiol 206:137–143

    Article  CAS  PubMed  Google Scholar 

  213. Welter MW, Horstman MP, Welter CJ, Welter LM (1993) An overview of successful TGEV vaccination strategies and discussion on the interrelationship between TGEV and PRCV. Adv Exp Med Biol 342:463–468

    Article  CAS  PubMed  Google Scholar 

  214. Jones KE et al (2008) Global trends in emerging infectious diseases. Nature 451(7181):990–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Laude H, Van Reeth K, Pensaert M (1993) Porcine respiratory coronavirus: molecular features and virus-host interactions. Vet Res 24(2):125–150

    CAS  PubMed  Google Scholar 

  216. Pogrebnyak N et al (2005) Severe acute respiratory syndrome (SARS) S protein production in plants: development of recombinant vaccine. Proc Natl Acad Sci U S A 102(25):9062–9067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. McPherson C et al (2016) Development of a SARS coronavirus vaccine from recombinant spike protein Plus Delta inulin adjuvant. Methods Mol Biol 1403:269–284

    Article  PubMed  Google Scholar 

  218. Tsunetsugu-Yokota Y, Ohnishi K, Takemori T (2006) Severe acute respiratory syndrome (SARS) coronavirus: application of monoclonal antibodies and development of an effective vaccine. Rev Med Virol 16(2):117–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Coughlin MM, Prabhakar BS (2012) Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: target, mechanism of action, and therapeutic potential. Rev Med Virol 22(1):2–17

    Article  CAS  PubMed  Google Scholar 

  220. Schindewolf C, Menachery VD (2019) Middle East respiratory syndrome vaccine candidates: cautious optimism. Viruses 11(1):E74

    Article  PubMed  CAS  Google Scholar 

  221. Zumla A, Memish ZA, Hui DS, Perlman S3 (2019) Vaccine against Middle East respiratory syndrome coronavirus. Lancet Infect Dis 19(10):1054–1055

    Article  PubMed  PubMed Central  Google Scholar 

  222. Modjarrad K et al (2019) Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect Dis 19(9):1013–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Yoon IK, Kim JH (2019) First clinical trial of a MERS coronavirus DNA vaccine. Lancet Infect Dis 19(9):924–925

    Article  PubMed  PubMed Central  Google Scholar 

  224. Dye C, Temperton N, Siddell SG (2007) Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines. J Gen Virol 88(Pt 6):1753–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Shirato K et al (2016) Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity. J Gen Virol 97(10):2528–2539

    Article  CAS  PubMed  Google Scholar 

  226. Li W et al (2017) Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry. Virus Res 235:6–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Schultze B, Herrler G (1992) Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J Gen Virol 73(Pt 4):901–906

    Article  CAS  PubMed  Google Scholar 

  228. Kunkel F, Herrler G (1993) Structural and functional analysis of the surface protein of human coronavirus OC43. Virology 195(1):195–202

    Article  CAS  PubMed  Google Scholar 

  229. Promkuntod N, van Eijndhoven RE, de Vrieze G, Grone A, Verheije MH (2014) Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus. Virology 448:26–32

    Article  CAS  PubMed  Google Scholar 

  230. Zust R et al (2007) Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines. PLoS Pathog 3(8):e109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Nakagawa K et al (2018) The endonucleolytic RNA cleavage function of nsp1 of Middle East respiratory syndrome coronavirus promotes the production of infectious virus particles in specific human cell lines. J Virol 92(21):e01157–e01118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Graham RL, Sims AC, Brockway SM, Baric RS, Denison MR (2005) The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J Virol 79(21):13399–13411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Cornillez-Ty CT, Liao L, Yates JR 3rd, Kuhn P, Buchmeier MJ (2009) Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J Virol 83(19):10314–10318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Chatterjee A et al (2009) Nuclear magnetic resonance structure shows that the severe acute respiratory syndrome coronavirus-unique domain contains a macrodomain fold. J Virol 83(4):1823–1836

    Article  CAS  PubMed  Google Scholar 

  235. Egloff MP et al (2006) Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J Virol 80(17):8493–8502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Eriksson KK, Cervantes-Barragan L, Ludewig B, Thiel V (2008) Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1″-phosphatase, a viral function conserved in the alpha-like supergroup. J Virol 82(24):12325–12334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS (2009) Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol 83(13):6689–6705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Serrano P et al (2007) Nuclear magnetic resonance structure of the N-terminal domain of nonstructural protein 3 from the severe acute respiratory syndrome coronavirus. J Virol 81(21):12049–12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Serrano P et al (2009) Nuclear magnetic resonance structure of the nucleic acid-binding domain of severe acute respiratory syndrome coronavirus nonstructural protein 3. J Virol 83(24):12998–13008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Ziebuhr J, Thiel V, Gorbalenya AE (2001) The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. J Biol Chem 276(35):33220–33232

    Article  CAS  PubMed  Google Scholar 

  241. Clementz MA, Kanjanahaluethai A, O'Brien TE, Baker SC (2008) Mutation in murine coronavirus replication protein nsp4 alters assembly of double membrane vesicles. Virology 375(1):118–129

    Article  CAS  PubMed  Google Scholar 

  242. Gadlage MJ et al (2010) Murine hepatitis virus nonstructural protein 4 regulates virus-induced membrane modifications and replication complex function. J Virol 84(1):280–290

    Article  CAS  PubMed  Google Scholar 

  243. Lu Y, Lu X, Denison MR (1995) Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. J Virol 69(6):3554–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Zhu X et al (2017) Porcine deltacoronavirus nsp5 inhibits interferon-beta production through the cleavage of NEMO. Virology 502:33–38

    Article  CAS  PubMed  Google Scholar 

  245. Zhai Y et al (2005) Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat Struct Mol Biol 12(11):980–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Kirchdoerfer RN, Ward AB (2019) Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun 10(1):2342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Egloff MP et al (2004) The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc Natl Acad Sci U S A 101(11):3792–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Zeng Z et al (2018) Dimerization of coronavirus nsp9 with diverse modes enhances its nucleic acid binding affinity. J Virol 92(17):e00692-18

    Article  PubMed  PubMed Central  Google Scholar 

  249. Bouvet M et al (2010) In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog 6(4):e1000863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Decroly E et al (2011) Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2'-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog 7(5):e1002059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Xu X et al (2003) Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucl Acids Res 31(24):7117–7130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ivanov KA et al (2004) Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 78(11):5619–5632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Ivanov KA, Ziebuhr J (2004) Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J Virol 78(14):7833–7838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Becares M et al (2016) Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune response. J Virol 90(11):5399–5414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Case JB et al (2018) Murine hepatitis virus nsp14 exoribonuclease activity is required for resistance to innate immunity. J Virol 92(1):e01531-17

    Article  PubMed  Google Scholar 

  256. Bhardwaj K, Sun J, Holzenburg A, Guarino LA, Kao CC (2006) RNA recognition and cleavage by the SARS coronavirus endoribonuclease. J Mol Biol 361(2):243–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Ivanov KA et al (2004) Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc Natl Acad Sci U S A 101(34):12694–12699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Athmer J et al (2017) In situ tagged nsp15 reveals interactions with coronavirus replication/transcription complex-associated proteins. MBio 8(1):e02320–e02316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Zust R et al (2011) Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12(2):137–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley Perlman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, Y., Grunewald, M., Perlman, S. (2020). Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. In: Maier, H., Bickerton, E. (eds) Coronaviruses. Methods in Molecular Biology, vol 2203. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0900-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0900-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0899-9

  • Online ISBN: 978-1-0716-0900-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics