Skip to main content
Log in

Effect of gestures and smartphone sizes on user experience of text input methods

  • Long Paper
  • Published:
Universal Access in the Information Society Aims and scope Submit manuscript

Abstract

This study evaluated the effect of gestures (text entry with thumbs of both hands and one-thumb text entry) and smartphone sizes (4.7, 5, and 5.5 inches) on the user experience during text entry with QWERTY and T9 input methods. Messaging using smartphones has become an important communication tool. Users change their gestures depending on the smartphone use context. Many different smartphone sizes are available, but suggestions from an ergonomic perspective are missing. Twenty-four participants used either two-thumb text entry or one-thumb text entry, using both QWERTY and T9. A different group of 24 participants entered text using QWERTY and T9 on smartphones with different sizes. Their performance, subjective rating, and physiological reactions were analyzed. Two-thumb text entry was more effective than one-thumb text entry. Better user experiences were achieved by using QWERTY for two-thumb text entry, by using T9 for one-thumb text entry, and by using QWERTY with a 5-inch smartphone compared with using a 4.7-inch smartphone. Using QWERTY with a 5.5-inch smartphone achieved a higher speed than using a 4.7-inch smartphone. Users who used T9 with a 5-inch smartphone achieved a better user experience than if using a 5.5-inch smartphone. QWERTY is more suitable for two-thumb text entry, while T9 is more suitable for one-thumb text entry. Different smartphone sizes affect the use of input methods. This study provides a reference for smartphone text input interface designers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Al-Showarah, S., Naseer, A.J., Sellahewa, H.: Effects of user age on smartphone and tablet use, measured with an eye-tracker via fixation duration, scan-path duration, and saccades proportion. In: UAHCI, pp. 3–14. Springer, Cham (2014)

  2. Azenkot, S., Zhai, S.: Touch behavior with different postures on soft smartphone keyboards. In: Proceedings of the 14th International Conference on Human–Computer Interaction with Mobile Devices and Services, pp. 251–260. ACM (2012). https://doi.org/10.1145/2371574.2371612

  3. Baumgartner, T., Esslen, M., Jäncke, L.: From emotion perception to emotion experience: emotions evoked by pictures and classical music. Int. J. Psychophysiol. 60(1), 34–43 (2006). https://doi.org/10.1016/j.ijpsycho.2005.04.007

    Article  Google Scholar 

  4. Block, J.: A study of affective responsiveness in a lie-detection situation. J. Abnorm. Soc. Psychol. 55(1), 11 (1957)

    Article  Google Scholar 

  5. Bouwman, H., De Reuver, M., Sell, A., Walden, P.: Introduction to the special issue on lifestyle and mobile communication. Telemat. Inform. 31(2), V–VI (2014). https://doi.org/10.1016/S0736-5853(13)00077-4

    Article  Google Scholar 

  6. Brooke, J.: SUS-A quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996)

    Google Scholar 

  7. Castellucci, S.J., MacKenzie, I.S.: Gathering text entry metrics on android devices. In: Proceedings of the CHI'11 Extended Abstracts on Human Factors in Computing Systems, pp. 1507–1512. ACM (2011)

  8. Castellucci, S.J., MacKenzie, I.S.: Gathering text input metrics on Android devices. In: Proceedings of the International Conference on Multimedia and Human–Computer Interaction (MHCI), pp. 120.1–120.8. International ASET Inc, Toronto (2013)

  9. Cha, J.M., Choi, E., Lim, J.: Virtual Sliding QWERTY: a new text entry method for smartwatches using Tap-N-Drag. Appl. Ergon. 51, 263–272 (2015). https://doi.org/10.1016/j.apergo.2015.05.008

    Article  Google Scholar 

  10. Chen, K.B., Savage, A.B., Chourasia, A.O., Wiegmann, D.A., Sesto, M.E.: Touch screen performance by individuals with and without motor control disabilities. Appl. Ergon. 44(2), 297–302 (2013). https://doi.org/10.1016/j.apergo.2012.08.004

    Article  Google Scholar 

  11. Chongyong, S., Dianzhi, L.: A comparison of several subjective rating scales of cognitive load. Psychol. Sci. 36, 194–201 (2013). https://doi.org/10.16719/j.cnki.1671-6981.2013.01.014

    Article  Google Scholar 

  12. Chourasia, A.O., Wiegmann, D.A., Chen, K.B., Irwin, C.B., Sesto, M.E.: Effect of sitting or standing on touch screen performance and touch characteristics. Hum. Factors 55(4), 789–802 (2013). https://doi.org/10.1177/0018720812470843

    Article  Google Scholar 

  13. Conway, R.T., Sangaline, E.W.: A Monte Carlo simulation approach for quantitatively evaluating keyboard layouts for gesture input. Int. J. Hum. Comput. Stud. 99, 37–47 (2017). https://doi.org/10.1016/j.ijhcs.2016.10.001

    Article  Google Scholar 

  14. Critchley, H.D.: Electrodermal responses: what happens in the brain. Neuroscientist 8(2), 132–142 (2002). https://doi.org/10.1177/107385840200800209

    Article  Google Scholar 

  15. DeviceAtlas: Most popular viewport size statistics for 2016. https://deviceatlas.com/blog/viewport-size-statistics-2016. Accessed 30 Dec 2016

  16. Findlater, L., Wobbrock, J.O.: From plastic to pixels: in search of touch-typing touch-screen keyboards. ACM Interact. XIX 3, 44–49 (2012). https://doi.org/10.1145/2168931.2168942

    Article  Google Scholar 

  17. Ghouali, S., Ghouali, Y., Feham, M.: An investigation of analytic decision during driving test. Int. J. Adv. Comput. Sci. Appl. 8 (2), 156–165 (2017). https://doi.org/10.14569/IJACSA.2017.080221

    Article  Google Scholar 

  18. Gold, J.E., Driban, J.B., Thomas, N., Chakravarty, T., Channell, V., Komaroff, E.G.: Postures, typing strategies, and gender differences in mobile device usage: an observational study. Appl. Ergon. 43(2), 408–412 (2012). https://doi.org/10.1016/j.apergo.2011.06.015

    Article  Google Scholar 

  19. Grubert, J., Ofek, E., Pahud, M., Kristensson, P.O.: The office of the future: virtual, portable, and global. IEEE CG&A 38(6), 125–133 (2018). https://doi.org/10.1109/MCG.2018.2875609

    Article  Google Scholar 

  20. Gustafsson, E., Johnson, P.W., Lindegård, A., Hagberg, M.: Technique, muscle activity and kinematic differences in young adults texting on mobile phones. Ergonomics 54(5), 477–487 (2011). https://doi.org/10.1080/00140139.2011.568634

    Article  Google Scholar 

  21. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183 (1988). https://doi.org/10.1016/S0166-4115(08)62386-9

    Article  Google Scholar 

  22. Hinkle, L.B.: Determination of emotional state through physiological measurement. Master of Science, Graduate Council of Texas State University, San Marcos, Texas, United States (2016)

  23. Huang, H., Huang, T.C.: Thumb touch control range and usability factors of virtual keys for smartphone games. J. Multimodal User Interfaces 9(8), 1–12 (2017). https://doi.org/10.1007/s12193-017-0248-9

    Article  Google Scholar 

  24. Hwangbo, H., Yoon, S.H., Jin, B.S., Han, Y.S., Ji, Y.G.: A study of pointing performance of elderly users on smartphones. Int. J. Hum. Comput. Interact. 29(9), 604–618 (2013). https://doi.org/10.1080/10447318.2012.729996

    Article  Google Scholar 

  25. Jiang, X., Bian, G.B., Tian, Z.: Removal of artifacts from EEG signals: a review. Sensors 19(5), 987 (2019). https://doi.org/10.3390/s19050987

    Article  Google Scholar 

  26. Jia, Z., Pei-Luen, P.R., Gavriel, S.: Older adults’ text entry on smartphones and tablets: investigating effects of display size and input method on acceptance and performance. Int. J. Hum. Comput. Interact. 30(9), 727–739 (2014). https://doi.org/10.1080/10447318.2014.924348

    Article  Google Scholar 

  27. Jonsson, P., Johnson, P.W., Hagberg, M., Forsman, M.: Thumb joint movement and muscular activity during mobile phone texting—a methodological study. J. Electromyogr. Kinesiol. 21(2), 363–370 (2011). https://doi.org/10.1016/j.jelekin.2010.10.007

    Article  Google Scholar 

  28. Jordan, J.: 53% of emails opened on mobile; outlook opens decrease 33% (2015). https://litmus.com/blog/53-of-emails-opened-on-mobile-outlook-opensdecrease-33

  29. Jung, K., Jang, J.: Development of a two-step touch method for website navigation on smartphones. Appl. Ergon. 48, 148–153 (2015). https://doi.org/10.1016/j.apergo.2014.11.006

    Article  Google Scholar 

  30. Jung, E.S., Im, Y.: Touchable area: an empirical study on design approach considering perception size and touch input behavior. Int. J. Ind. Ergon. 49, 21–30 (2015). https://doi.org/10.1016/j.ergon.2015.05.008

    Article  Google Scholar 

  31. Kane, S.K., Wobbrock, J.O., Smith, I.E.: Getting off the treadmill: evaluating walking user interfaces for mobile devices in public spaces. In: Proceedings of the 10th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 109–118. Association for Computing Machinery, New York (2008). https://doi.org/10.1145/1409240.1409253

  32. Kietrys, D.M., Gerg, M.J., Dropkin, J., Gold, J.E.: Mobile input device type, texting style and screen size influence upper extremity and trapezius muscle activity, and cervical posture while texting. Appl. Ergon. 50, 98–104 (2015). https://doi.org/10.1016/j.apergo.2015.03.003

    Article  Google Scholar 

  33. Kim, J.H., Aulck, L., Bartha, M.C., Harper, C.A., Johnson, P.W.: Differences in typing forces, muscle activity, comfort, and typing performance among virtual, notebook, and desktop keyboards. Appl. Ergon. 45(6), 1406–1413 (2014). https://doi.org/10.1016/j.apergo.2014.04.001

    Article  Google Scholar 

  34. Kristensson, P.O.: Five challenges for intelligent text entry methods. AI Mag. 30(4), 85–94 (2009). https://doi.org/10.1177/1059712309339854

    Article  Google Scholar 

  35. Kristensson, P.O., Zhai, S.: SHARK2: a large vocabulary shorthand writing system for pen-based computers. In: Proceedings of UIST 2004, pp. 43–52. ACM Press (2004)

  36. Kristensson, P.O., Zhai, S.: Relaxing stylus typing precision by geometric pattern matching. In: Proceedings of IUI 2005, pp. 151–158. ACM Press (2005)

  37. Kwon, S., Lee, D., Chung, M.K.: Effect of key size and activation area on the performance of a regional error correction method in a touch-screen QWERTY keyboard. Int. J. Ind. Ergon. 39(5), 888–893 (2009). https://doi.org/10.1016/j.ergon.2009.02.013

    Article  Google Scholar 

  38. Lee, S.C., Cha, M.C., Hwangbo, H., Mo, S., Ji, Y.G.: Smartphone form factors: effects of width and bottom bezel on touch performance, workload, and physical demand. Appl. Ergon. 67, 142–150 (2018). https://doi.org/10.1016/j.apergo.2017.10.002

    Article  Google Scholar 

  39. Lee, S., Kyung, G., Kim, M., Choi, D., Choi, H., Hwang, K., Park, S., Kim, S.Y., Lee, S.: Shaping rollable display devices: effects of gripping condition, device thickness, and hand length on bimanual perceived grip comfort. Hum. Factors 62(5), 770–786 (2019)

    Article  Google Scholar 

  40. Leversedge, F.J.: Anatomy and pathomechanics of the thumb. Hand Clin. 24(3), 219–229 (2008). https://doi.org/10.1016/j.hcl.2008.03.010

    Article  Google Scholar 

  41. Li, Y., You, F., Ji, M., You, X.: The influence of smartphone text input method, posture, and environment on user experience. Int. J. Hum. Comput. Interact. 36(12), 1110–1121 (2020). https://doi.org/10.1080/10447318.2020.1719465

    Article  Google Scholar 

  42. Li, Y., You, F., You, X., Ji, M.: Smartphone text input: effects of experience and phrase complexity on user performance, physiological reaction, and perceived usability. Appl. Ergon. 80, 200–209 (2019). https://doi.org/10.1016/j.apergo.2019.05.019

    Article  Google Scholar 

  43. Lin, Y.C., Lin, M.H.: This study of hand anthropometry and touchscreen size of smartphones. In: International Conference on Human Interface and the Management of Information, pp. 617–626. Springer, Cham (2015)

  44. Ljubic, S., Glavinic, V., Kukec, M.: Effects of interaction style and screen size on touchscreen text entry performance: an empirical research. In: UAHCI, pp. 68–79. Springer, Cham (2014)

  45. MacKenzie, I.S., Soukoreff, R.W.: Text entry for mobile computing: models and methods, theory and practice. Hum. Comput. Interact. 17, 147–198 (2002)

    Article  Google Scholar 

  46. MacKenzie, I.S., Zhang, S.X., Soukoreff, R.W.: Text entry using soft keyboards. Behav. Inform. Technol. 18(4), 235–244 (1999). https://doi.org/10.1080/014492999118995

    Article  Google Scholar 

  47. MacKenzie, I.S., Soukoreff, R.W.: Phrase sets for evaluating text entry techniques. In: Proceedings of the CHI'03 Extended Abstracts on Human Factors in Computing Systems, pp. 754–755. ACM (2003)

  48. Market Intelligence & Consulting Institute (MIC): Worldwide Smartphone Market Forecast, 2018–2022 (2018). https://www.researchandmarkets.com/reports/4471265/worldwide-smartphone-market-forecast-2018-2022

  49. Martinez-Peñaranda, C., Bailer, W., Barreda-Ángeles, M., Weiss, W., Pereda-Baños, A.: A psychophysiological approach to the usability evaluation of a multi-view video browsing tool. In: Proceedings of the International Conference on Multimedia Modeling, pp. 456–466. Springer, Berlin (2013)

  50. McCarthy, M.W., James, D.A., Rowlands, D.D.: Smartphones: feasibility for real-time sports monitoring. Procedia Eng. 60, 409–414 (2013). https://doi.org/10.1016/j.proeng.2013.07.044

    Article  Google Scholar 

  51. Meehan, M., Razzaque, S., Insko, B., Whitton, M., Brooks, F.P.: Review of four studies on the use of physiological reaction as a measure of presence in stressful virtual environments. Appl. Psychophysiol. Biofeedback 30(3), 239–258 (2005). https://doi.org/10.1007/s10484-005-6381-3

    Article  Google Scholar 

  52. Nam, Y., Koo, B., Cichocki, A., Choi, S.: GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control. IEEE Trans. Bio Med. Eng. 61(2), 453–462 (2013). https://doi.org/10.1109/TBME.2013.2280900

    Article  Google Scholar 

  53. Niu, J., Liu, Y., Lin, J., Zhu, L., Wang, K.: Stroke++: a new Chinese input method for touch screen mobile phones. Int. J. Hum. Comput. Stud. 72(4), 440–450 (2014). https://doi.org/10.1016/j.ijhcs.2014.01.001

    Article  Google Scholar 

  54. Othman, M.K., Petrie, H., Power, C.: Measuring the usability of a smartphone delivered museum guide. Procedia Soc. Behav. Sci. 97, 629–637 (2013). https://doi.org/10.1016/j.sbspro.2013.10.282

    Article  Google Scholar 

  55. Park, Y., Heo, H., Lee, K.: Enhanced auditory feedback for Korean touch screen keyboards. Int. J. Hum. Comput. Stud. 73, 1–11 (2015). https://doi.org/10.1016/j.ijhcs.2014.08.002

    Article  Google Scholar 

  56. Park, Y.S., Han, S.H.: Touch key design for one-handed thumb interaction with a mobile phone: effects of touch key size and touch key location. Int. J. Ind. Ergon. 40(1), 68–76 (2010). https://doi.org/10.1016/j.ergon.2009.08.002

    Article  Google Scholar 

  57. Perotto, A.O.: Anatomical Guide for the Electromyographer: The Limbs and Trunk. Charles C Thomas Publisher, Springfield (2011)

    Google Scholar 

  58. Pfister, H., Wollstädter, S., Peter, C.: Affective responses to system messages in human–computer-interaction: effects of modality and message type. Interact. Comput. 23(4), 372–383 (2011). https://doi.org/10.1016/j.intcom.2011.05.006

    Article  Google Scholar 

  59. Pritom, A.I., Mahmud, H., Ahmed, S., Hasan, M.K., Khan, M.M.: TYPEHEX keyboard: a virtual keyboard for faster typing in Smartphone. In: Proceedings of the 18th International Conference on Computer and Information Technology (ICCIT), pp. 522–526. IEEE (2015). https://doi.org/10.1109/ICCITechn.2015.7488126

  60. SAC.: Hand Sizing System-Adult (Vol. GB/T 16252-1996). Standardization Administration of the People's Republic of China, SAC, Beijing (1996)

  61. Schildbach, B., Rukzio, E.: Investigating selection and reading performance on a mobile phone while walking. In: Proceedings of the 12th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 93–102. Association for Computing Machinery, New York (2010). https://doi.org/10.1145/1851600.1851619

  62. Seror, P., Maisonobe, T., Bouche, P.: A new electrode placement for recording the compound motor action potential of the first dorsal interosseous muscle. Neurophysiol. Clin. 41(4), 173–180 (2011). https://doi.org/10.1016/j.neucli.2011.06.003

    Article  Google Scholar 

  63. Seven Nights Digital House: (2018). https://baijiahao.baidu.com/s?id=1590412081911332478&wfr=spider&for=pc

  64. Shin, G., Zhu, X.: Ergonomic issues associated with the use of touchscreen desktop PC. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 55, No. 1, pp. 949–953. SAGE Publications, Los Angeles (2011)

  65. Sinex, J.E.: Pulse oximetry: principles and limitations. Am. J. Emerg. Med. 17(1), 59–66 (1999). https://doi.org/10.1016/S0735-6757(99)90019-0

    Article  Google Scholar 

  66. Šolcová, I.P., Lačev, A.: Differences in male and female subjective experience and physiological reactions to emotional stimuli. Int. J. Psychophysiol. 117, 75–82 (2007). https://doi.org/10.1016/j.ijpsycho.2017.04.009

    Article  Google Scholar 

  67. Soylu, A.R., Yavaş, G., Ergin, B., Keceli, S.: Effect of touch coordinate display as a form of augmented, concurrent visual feedback on the accuracy of single-handed typing via smartphone virtual keyboards. Turk. J. Electr. Eng. Comput. Sci. 25(3), 1724–1732 (2017). https://doi.org/10.3906/elk-1504-11

    Article  Google Scholar 

  68. Tsai, T.H., Tseng, K.C., Chang, Y.S.: Testing the usability of smartphone surface gestures on different sizes of smartphones by different age groups of users. Comput. Hum. Behav. 75, 103–116 (2017). https://doi.org/10.1016/j.chb.2017.05.013

    Article  Google Scholar 

  69. Trudeau, M.B., Asakawa, D.S., Jindrich, D.L., Dennerlein, J.T.: Two-handed grip on a mobile phone affords greater thumb motor performance, decreased variability, and a more extended thumb posture than a one-handed grip. Appl. Ergon. 52, 24–28 (2016). https://doi.org/10.1016/j.apergo.2015.06.025

    Article  Google Scholar 

  70. Trudeau, M.B., Udtamadilok, T., Karlson, A.K., Dennerlein, J.T.: Thumb motor performance varies by movement orientation, direction, and device size during single-handed mobile phone use. Hum. Factors 54(1), 52–59 (2012). https://doi.org/10.1177/0018720811423660

    Article  Google Scholar 

  71. Trudeau, M.B., Young, J.G., Jindrich, D.L., Dennerlein, J.T.: Thumb motor performance varies with thumb and wrist posture during single-handed mobile phone use. J. Biomech. 45(14), 2349–2354 (2012). https://doi.org/10.1016/j.jbiomech.2012.07.012

    Article  Google Scholar 

  72. Turner, C.J., Chaparro, B.S., He, J.: Text input on a smartwatch QWERTY keyboard: tap versus trace. Int. J. Hum. Comput. Interact. 33(2), 143–150 (2017). https://doi.org/10.1080/10447318.2016.1223265

    Article  Google Scholar 

  73. Vertanen, K., Kristensson, P.O.: Mining, analyzing, and modeling text written on mobile devices. Nat. Lang. Eng. 27(1), 1–33 (2021). https://doi.org/10.1017/S1351324919000548

    Article  Google Scholar 

  74. Victor, H.: Did you know that smartphone screens nearly doubled in size since 2007. Phone Arena (2014). http://www.phonearena.com/news/Did-you-know-thatsmartphone-screens-nearly-doubled-in-size-since-2007_id52067

  75. Wang, Y., Ai, H., Liang, Q., Chang, W., He, J.: How to optimize the input efficiency of keyboard buttons in large smartphone? A comparison of curved keyboard and keyboard area size. In: HCI, pp. 85–92. Springer, Cham (2019)

  76. Werth, A., Babski-Reeves, K.: Effects of portable computing devices on posture, muscle activation levels and efficiency. Appl. Ergon. 45(6), 1603–1609 (2014). https://doi.org/10.1016/j.apergo.2014.05.008

    Article  Google Scholar 

  77. Wright, P., Bartram, C., Rogers, N., Emslie, H., Evans, J., Wilson, B., Belt, S.: Text entry on handheld computers by older users. Ergonomics 43(6), 702–716 (2000). https://doi.org/10.1080/001401300404689

    Article  Google Scholar 

  78. Wu, C.F., Lai, C.C., Liu, Y.K.: Investigation of the performance of trackpoint and touchpads with varied right and left buttons function locations. Appl. Ergon. 44(2), 312–320 (2013). https://doi.org/10.1016/j.apergo.2012.08.006

    Article  Google Scholar 

  79. Xiong, J., Muraki, S.: Effects of age, thumb length and screen size on thumb movement coverage on smartphone touchscreens. Int. J. Ind. Ergon. 53, 140–148 (2016). https://doi.org/10.1016/j.ergon.2015.11.004

    Article  Google Scholar 

  80. Yamada, H.: A historical study of typewriters and typing methods, from the position of planning Japanese parallels. J. Inf. Process. 2, 175–202 (1980)

    Google Scholar 

  81. Yi, X., Yu, C., Shi, W., Shi, Y.: Is it too small: investigating the performances and preferences of users when typing on tiny QWERTY keyboards. Int. J. Hum. Comput. Stud. 106, 44–62 (2017). https://doi.org/10.1016/j.ijhcs.2017.05.001

    Article  Google Scholar 

  82. Yin, P.Y., Su, E.P.: Cyber Swarm optimization for general keyboard arrangement problem. Int. J. Ind. Ergon. 41(1), 43–52 (2011). https://doi.org/10.1016/j.ergon.2010.11.007

    Article  Google Scholar 

  83. Yu, Y., Zhou, Z., Yin, E., Jiang, J., Liu, Y., Hu, D.: A P300-based brain–computer interface for Chinese character input. Int. J. Hum. Comput. Interact. 32(11), 878–884 (2016). https://doi.org/10.1080/10447318.2016.1203529

    Article  Google Scholar 

  84. Zhai, S., Hunter, M., Smith, B.A.: Performance optimization of virtual keyboards. Hum. Comput. Interact. 17(2–3), 229–269 (2002). https://doi.org/10.1080/07370024.2002.9667315

    Article  Google Scholar 

  85. Zhai, S., Kristensson, P.O.: Shorthand writing on stylus keyboard. In: Proceedings of CHI 2003, pp. 97–104. ACM Press (2003)

  86. Zhai, S., Kristensson, P.O.: The word-gesture keyboard: reimagining keyboard interaction. Commun. ACM 55(9), 91–101 (2012). https://doi.org/10.1145/2330667.2330689

    Article  Google Scholar 

  87. Zhou, J., Rau, P.L.P., Salvendy, G.: Older adults’ text entry on smartphones and tablets: investigating effects of display size and input method on acceptance and performance. Int. J. Hum. Comput. Interact. 30(9), 727–739 (2014). https://doi.org/10.1080/10447318.2014.924348

    Article  Google Scholar 

  88. Zhou, J., Sun, J., Chen, F., Wang, Y., Taib, R., Khawaji, A., Li, Z.: Measurable decision making with GSR and pupillary analysis for intelligent user interface. ACM Trans. Comput. Hum. Interact. (TOCHI) 21(6), 33 (2015). https://doi.org/10.1145/2687924

    Article  Google Scholar 

  89. Zhu, Y., Machi, Y.: An evaluation about the characters of four inputting methods of mobile phone based on human body's physiological indices. In: Proceedings of the 2005 International Conference on Active Media Technology, pp. 364–368. IEEE (2005)

Download references

Acknowledgements

This work was supported by the Youth Innovation Team of Shaanxi Universities (202084). We thank Professor Castellucci Steven J. from the Department of Computer Science and Engineering of York University for providing the programming software and for his significant help with our experimental material and performance collection.

Funding

This work was supported by the Youth Innovation Team of Shaanxi Universities (202084). We thank Professor Castellucci Steven J. from the Department of Computer Science and Engineering of York University for providing the programming software and for his significant help with our experimental material and performance collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuqun You.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

The research study was approved by the University’s Advanced Studies and Research Board. The research was conducted according to ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., You, F., Ji, M. et al. Effect of gestures and smartphone sizes on user experience of text input methods. Univ Access Inf Soc 22, 537–554 (2023). https://doi.org/10.1007/s10209-021-00863-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10209-021-00863-7

Keywords

Navigation