Skip to main content

Advertisement

Log in

Zero waste management of spent mushroom compost

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Edible mushroom are grown commercially using lignocellulosic waste by applying a biological process. However after the harvesting season about 70% of the substrate remain as a spent mushroom compost (SMC). SMC can be the source for retrieving value-added products which support zero waste approach. In this paper, the fate of SMC from agricultural production will be discussed focusing on its utilization. Based on the previous reports, major uses of SMC were in the agricultural field as mushroom media, animal feed, plant compost, fertilizer and others. Extended usage of SMC, i.e., for second cultivation is proposed in this review. In addition, the SMC was also applied in renewable energy production, e.g., feedstock for biogas, bioethanol or biohydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Royse DJ, Baars J, Tan Q (2017) Current overview of mushroom production the world. In: Zied DC, Pardo-Giminez A (eds) Edible and medicinal mushrooms: technology and applications. JohnWiley & Sons Ltd, Hoboken, pp 5–13

    Chapter  Google Scholar 

  2. Grimm D, Wösten HAB (2018) Mushroom cultivation in the circular economy. Appl Microbiol Biotechnol 102(18):7795–7803. https://doi.org/10.1007/s00253-018-9226-8

    Article  Google Scholar 

  3. Oseni TO, Dlamini SO, Earnshaw DM, Masarirambi MT (2012) Effect of substrate pre-treatment methods on oyster mushroom (Pleurotus ostreatus) production. Int J Agric Biol 14(2):251–255

    Google Scholar 

  4. Pérez-Chávez AM, Mayer L, Albertó E (2019) Mushroom cultivation and biogas production: a sustainable reuse of organic resources. Energy Sustain Dev 50:50–60. https://doi.org/10.1016/j.esd.2019.03.002

    Article  Google Scholar 

  5. Jasińska A (2018) Spent mushroom compost (SMC)–retrieved added value product closing loop in agricultural production. Acta Agrar Debr. https://doi.org/10.34101/actaagrar/150/1715

    Article  Google Scholar 

  6. Singh AD, Vikineswary S, Abdullah N, Sekaran M (2011) Enzymes from spent mushroom substrate of Pleurotus sajor-caju for the decolourisation and detoxification of textile dyes. World J Microbiol Biotechnol 27(3):535–545. https://doi.org/10.1007/s11274-010-0487-3

    Article  Google Scholar 

  7. Jasińska A, Wojciechowska E, Stoknes K, Krajewska K (2016) Combined cultivation of edible mushrooms and vegetables. In: Book of proceedings 7th international scientific agriculture symposium, Agrosym 2016, pp 200–206

  8. Curtis J, Suess A (2006) Report: value-added strategies for spent mushroom substrate in BC. British Columbia Ministry of Agricultural and Lands, British Columbia

    Google Scholar 

  9. Das M, Uppal HS, Singh R, Beri S, Mohan KS, Gupta VC, Adholeya A (2011) Co-composting of physic nut (Jatropha curcas) deoiled cake with rice straw and different animal dung. Bioresour Technol 102:6541–6546

    Article  Google Scholar 

  10. Najafi B, Ardabili SF (2018) Application of ANFIS, ANN, and logistic methods in estimating biogas production from spent mushroom compost (SMC). Resour Conserv Recycl 133:169–178. https://doi.org/10.1016/j.resconrec.2018.02.025

    Article  Google Scholar 

  11. Purnomo A, Suprihatin S, Romli M, Hasanudin U (2018) Biogas production from oil palm empty fruit bunches of post mushroom cultivation media. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/141/1/012024

    Article  Google Scholar 

  12. Ryu C, Finney K, Sharifi VN, Swithenbank J (2008) Pelletised fuel production from coal tailings and spent mushroom compost—part I. Identification of pelletisation parameters. Fuel Process Technol 89(3):269–275. https://doi.org/10.1016/j.fuproc.2007.11.035

    Article  Google Scholar 

  13. Hanafi FHM, Rezania S, Taib SM, Din MFMd, Yamauchi M, Sakamoto M, Ebrahimi SS (2018) Environmentally sustainable applications of agro-based spent mushroom substrate (SMC): an overview. J Mater Cycles Waste Manage 20(3):1383–1396. https://doi.org/10.1007/s10163-018-0739-0

    Article  Google Scholar 

  14. Kulshreshtha S (2019) Removal of pollutants using spent mushrooms substrates. Environ Chem Lett 17:833–847. https://doi.org/10.1007/s10311-018-00840-2

    Article  Google Scholar 

  15. Oei P, Hui Z, Jianhua L, Meiyuan C, Yi C (2008) The alternative uses of spent mushroom compost. In: Proceeding of the sixth international conference on mushroom biology and mushroom products, Germany, pp 231–245

  16. Jordan SN, Mullen GJ, Murphy MC (2008) Composition variability of spent mushroom compost in Ireland. Bioresour Technol 99:411–418

    Article  Google Scholar 

  17. Azhar M, Yuzaidi M, Hafizah SN (2018) Teknologi penanaman cendawan volvariella. Penerbit Agensi Nuklear, Malaysia, pp 5–15

    Google Scholar 

  18. Ali N, Tabi ANM, Zakil FA, Fauzai WNFM, Hassan O (2013) Yield performance and biological efficiency of empty fruit bunch (EFB) and palm pressed fibre (PPF) as substrates for the cultivation of Pleurotus ostreatus. J Teknol. https://doi.org/10.1113/jt.v64.1243

    Article  Google Scholar 

  19. Chang ST (1978) Volvariella volvacea. In: Chang ST, Hayes WA (eds) The biology and cultivation of edible mushrooms, 1st edn. Elsevier, USA, pp 573–603. https://doi.org/10.1016/b978-0-12-168050-3.50033-5

    Chapter  Google Scholar 

  20. Williams BC, McMullan JT, McCahey S (2001) An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresour Technol 79(3):227–230

    Article  Google Scholar 

  21. Sun X, Zhang R, Zhang Y (2004) Production of lignocellulolytic enzymes by Trametes gallica and detection of polysaccharide hydrolase and laccase activities in polyacrylamide gels. J Basic Microbiol 44:220–231

    Article  Google Scholar 

  22. Uzun I (2004) Use of SMC in sustainable fruit production. J Fruit Ornam Plant Res 12(Special edition):157–165

  23. Triyono S, Haryanto A, Telaumbanua M, Dermiyati D, Lumbanraja J, To F (2019) Cultivation of straw mushroom (Volvariella volvacea) on oil palm empty fruit bunch growth medium. Int J Recycl Org Waste Agric. https://doi.org/10.1007/s40093-019-0259-5

    Article  Google Scholar 

  24. Atila F (2019) Compositional changes in lignocellulosic content of some agro-wastes during the production cycle of shiitake mushroom. Sci Hortic 245:263–268. https://doi.org/10.1016/j.scienta.10.029

    Article  Google Scholar 

  25. Zhang HL, Wei JK, Wang QH, Yang R, Gao XJ, Sang YX, Chen QJ (2019) Lignocellulose utilization and bacterial communities of millet straw based mushroom (Agaricus bisporus) production. Sci Rep 9(1):1–13. https://doi.org/10.1038/s41598-018-37681-6

    Article  Google Scholar 

  26. Nasreen Z, Ali S, Usman S, Nazir S, Yasmeen A (2016) Comparative study on the growth and yield of Pleurotus Ostreatus mushroom on lignocellulosic by-products. Int J Adv Res Bot 2(1):42–49. https://doi.org/10.20431/2455-4316.0201006

    Article  Google Scholar 

  27. Liers TA, Ullrich R, Hofrichter M (2011) Patterns of lignin degradation and oxidative enzyme secretion by different wood and litter colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol 78(1):91–102. https://doi.org/10.1111/j.1574-6941.2011.01144.x

    Article  Google Scholar 

  28. Xie C, Gong W, Yan L, Zhu Z, Hu Z, Peng Y (2017) Biodegradation of ramie stalk by Flammulina velutipes: mushroom production and substrate utilization. AMB Express. https://doi.org/10.1186/s13568-017-0480-4

    Article  Google Scholar 

  29. Lou Z, Sun Y, Zhou X, Baig SA, Hu B, Xu X (2017) Composition variability of spent mushroom substrates during continuous cultivation, composting process and their effects on mineral nitrogen transformation in soil. Geoderma 307:30–37. https://doi.org/10.1016/j.geoderma.2017.07.033

    Article  Google Scholar 

  30. Syguła E, Koziel JA, Białowiec A (2019) Proof-of-the-concept of spent mushrooms compost torrefaction—preliminary studies of process kinetics and the influence of temperature and duration on calorific value of the biochar. https://www.Preprints.org. Accessed 5 May 2020

  31. Fang W, Zhang X, Zhang P, Morera XC, van Lier JB, Spanjers H (2019) Evaluation of white rot fungi pretreatment of mushroom residues for volatile fatty acid production by anaerobic fermentation: feedstock applicability and fungal function. Bioresour Technol 297:122447

    Article  Google Scholar 

  32. Zainol RM, Nazri M, Tamami M, Aznie R, Rose C, Mapjabil J, Marzuki M (2018) Kaedah pengurusan sisa substrat cendawan dalam kalangan Agropreneur Muda Cendawan. Geografi 6(3):67–75

    Google Scholar 

  33. http://www.doe.gov.my/. Accessed 11 May 2020

  34. Phan CW, Sabaratnam V (2012) Potential uses of SMC and its associated lignocellulosic enzymes. Appl Microbiol Biotechnol 96(4):863–873

    Article  Google Scholar 

  35. Noonsong V, Puttakun V, Tinsirisuk M, Seephueak P (2016) Recycling of spent Pleurotus compost for production of the Agrocybe cylindracea. Mycosphere. https://doi.org/10.5943/mycosphere/7/1/4

    Article  Google Scholar 

  36. Ahlawat OP, Sagar MP (2007) Management of spent mushroom substrate. Technical bulletin. National Research Centre for Mushroom

    Google Scholar 

  37. Ashrafi R, Hian MH, Rahman MM, Jahiruddin M (2017) Reuse of spent mushroom substrate as casing material for the production of milky white mushroom. J Bangladesh Agric Univ 15(2):239–247

    Article  Google Scholar 

  38. Li S, Li D, Li J, Li Y, Li G, Zang B, Li Y (2018) Effect of spent mushroom substrate as a bulking agent on gaseous emissions and compost quality during pig manure composting. Environ Sci Pollut Res 25(13):12398–12406. https://doi.org/10.1007/s11356-018-1450-3

    Article  Google Scholar 

  39. Van Kuijk SJA, Sonnenberg ASM, Baars JJP, Hendriks WH, Cone JW (2015) Fungal treatment of lignocellulosic biomass: Importance of fungal species, colonization and time on chemical composition and in vitro rumen degradability. Anim Feed Sci Technol 209:40–50. https://doi.org/10.1016/j.anifeedsci.2015.07.026

    Article  Google Scholar 

  40. Chang KL, Chen XM, Sun J, Liu JY, Sun SY, Yang ZY, Wang Y (2017) Spent mushroom substrate biochar as a potential amendment in pig manure and rice straw composting processes. Environ Technol 38(13–14):1765–1769. https://doi.org/10.1080/09593330.2016.1234000

    Article  Google Scholar 

  41. Najafi B, Ardabili SF, Shamshirband S, Chau K-W (2019) Spent mushroom compost (SMC) as a source for biogas production in Iran. Eng Appl Comput Fluid Mech 13(1):967–982. https://doi.org/10.1080/19942060.2019.1658644

    Article  Google Scholar 

  42. Lin HN, Wang YT, Zhu MJ (2017) Evaluation of spent mushroom compost as a lignocellulosic substrate for hydrogen production by Clostridium thermocellum. Int J Hydrogen Energy 42(43):26687–26694. https://doi.org/10.1016/j.ijhydene.2017.09.040

    Article  Google Scholar 

  43. Hu BB, Zhu MJ (2017) Enhanced hydrogen production and biological saccharification from spent mushroom compost by Clostridium thermocellum 27405 supplemented with recombinant Β-glucosidases. Int J Hydrogen Energy 42(12):7866–7874. https://doi.org/10.1016/j.ijhydene.2017.01.031

    Article  Google Scholar 

  44. Ryden P, Efthymiou MN, Tindyebwa TAM, Elliston A, Wilson DR, Waldron KW, Malakar PK (2017) Bioethanol production from spent mushroom compost derived from chaff of millet and sorghum. Biotechnol Biofuels 10(1):1–11. https://doi.org/10.1186/s13068-017-0880-

    Article  Google Scholar 

  45. Teoh TC, Soo CS, Heidelberg T, Zainudin A (2014) Bioethanol from spent mushroom sawdust waste by perchloric acid: easy sugars separation and hydrolysis without charring. Chiang Mai J Sci 41(3):513–523

    Google Scholar 

  46. Garrido R, Ruiz-Felix MN, Satrio JA (2012) Effects of hydrolysis and torrefaction on pyrolysis product distribution of spent mushroom compost (SMC). Int J Environ Pollut Remediat. https://doi.org/10.1159/ijepr.2012.014

    Article  Google Scholar 

  47. Jasiūnas L, Pedersen TH, Toor SS, Rosendahl LA (2017) Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust. Renew Energy 111:392–398. https://doi.org/10.1016/j.renene.2017.04.019

    Article  Google Scholar 

  48. de Almeida Moreira BR, da Silva Viana R, Magalhães AC, Caraschi JC, Zied DC, Dias ES, Rinker DL (2020) Production of Pleurotus ostreatus var. Florida on briquettes and recycling its spent substrate as briquettes for fuel grade biosolids. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.1239

    Article  Google Scholar 

  49. Zeng X-l, Han F, Ye J-l, Zhong Y-m (2017) Recycling spent Pleurotus eryngii substrate supplemented with Tenebrio molitor feces for cultivation of Agrocybe chaxingu. Int J Recycl Org Waste Agric 6:275–280. https://doi.org/10.1007/s40093-017-0171-9

    Article  Google Scholar 

  50. Royse DJ (1993) Recycling of spent shiitake substrate for production of the oyster mushroom (Pleurotus sajor-caju). Mushroom News 41(2):14–18

    Google Scholar 

  51. Matute R, González D, Figlas CN (2011) Agaricus blazei production on noncomposted substrates based on sunflower seed hulls and spent oyster mushroom substrate. World J Microbiol Biotechnol 27(6):1331–1339

    Article  Google Scholar 

  52. Mamiro DP, Royse DJ, Beelman RB (2007) Yield, size, and mushroom solids content of Agaricus bisporus produced on non-composted substrate and spent mushroom compost. World J Microbiol Biotechnol 23(9):1289–1296

    Article  Google Scholar 

  53. Pardo-Giménez A, Buendía MRP, de Juan Valero JA, Pardo-González JE, Zied DC (2012) Cultivation of Pleurotus ostreatus using supplemented spent oyster mushroom substrate. Acta Hortic 933:267–272

    Article  Google Scholar 

  54. Oei P (1991) Manual on mushroom cultivation: techniques species and opportunities for commercial application in developing countries. TOOL Publications, Amsterdam, p 274

    Google Scholar 

  55. Poppe J (2000) Use of the agricultural waste materials in the cultivation of mushrooms. Mushroom Sci 15:3–23

    Google Scholar 

  56. Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):73–80. https://doi.org/10.7763/ijesd.2012.v3.191

    Article  MathSciNet  Google Scholar 

  57. Triyono S, Pujiono R, Zulkarnain I, Ridwan R, Haryanto A, Dermiyati D, Jamalam L (2019) The effects of empty fruit bunch treatments for straw mushroom substrate on physicochemical properties of a biofertilizer. Tek Pertan Lampung 8(2):120–129

    Google Scholar 

  58. Sendi H, Mohamed MTM, Anwar MP, Saud HM (2013) Spent mushroom waste as a media replacement for Peat Moss in Kai-Lan (Brassica oleracea var. Alboglabra) production. Sci World J. https://doi.org/10.1155/2013/258562

    Article  Google Scholar 

  59. Zhang CK, Gong F, Li DS (1995) A note on the utilisation of SMCs in animal feeds. Biol Conserv 4(4):89–91. https://doi.org/10.1016/0006-3207(72)90131-0

    Article  Google Scholar 

  60. Fazaeli H, Masoodi ART (2006) Spent wheat straw compost of Agaricus bisporus mushroom as ruminant feed. Asian Australas J Anim Sci 19(6):845–851. https://doi.org/10.5713/ajas.2006.845

    Article  Google Scholar 

  61. Fazaeli H, Shafyee-Varzeneh H, Farahpoor A, Moayyer A (2014) Recycling of mushroom compost wheat straw in the diet of feedlot calves with two physical forms. Int J Recycl Org Waste Agric. https://doi.org/10.1007/s40093-014-0065-z

    Article  Google Scholar 

  62. Chang SC, Lin MJ, Chao YP, Chiang CJ, Jea YS, Lee TT (2016) Effects of SMC meal on growth performance and meat characteristics of grower geese. Rev Bras Zootec 45(6):281–287. https://doi.org/10.1590/S1806-92902016000600001

    Article  Google Scholar 

  63. Wiafe-Kwagyan M, Odamtten GT (2018) Use of Pleurotus ostreotus strain P-31 SMC (SMC) as soil conditioner on the growth and yield performance of Capsicum annuum L. and Solanum lycopersicon L. seedlings under greenhouse conditions in Ghana. Trop Life Sci Res 29(1):173–194

    Article  Google Scholar 

  64. Zhang RH, Duan ZQ, Li ZG (2012) Use of SMC as growing media for tomato and cucumber seedlings. Pedosphere 22(3):333–342. https://doi.org/10.1016/S1002-0160(12)60020-4

    Article  Google Scholar 

  65. Marques ELS, Martos ET, Souza RJ, Silva R, Zied DC, Dias ES (2014) SMC as a substrate for the production of lettuce seedlings. J Agric Sci 6(7):138–143. https://doi.org/10.5539/jas.v6n7p138

    Article  Google Scholar 

  66. Lopes RX, Zied DC, Martos ET, de Souza RJ, da Silva R, Dias ES (2015) Application of spent Agaricus subrufescens compost in integrated production of seedlings and plants of tomato. Int J Recycl Org Waste Agric 4(3):211–218. https://doi.org/10.1007/s40093-015-0101-7

    Article  Google Scholar 

  67. Horan H, Yaser AZ, Wid N (2000) Anaerobic digestion processes—applications and effluent treatment. Springer, Singapore (ISBN 978-981-10-8128-6)

    Google Scholar 

  68. Mamimin C, Chanthong S, Leamdum C, Thong SO, Prasertsan P (2021) Improvement of empty palm fruit bunches biodegradability and biogas production by integrating the straw mushroom cultivation as a pretreatment in the solid-state anaerobic digestion. Bioresour Technol 319:124227. https://doi.org/10.1016/j.biortech.2020.124227

    Article  Google Scholar 

  69. Nuchdang S, Vatanyoopaisarn S, Phalakornkule C (2015) Effectiveness of fungal treatment by Coprinopsis cinerea and Polyporus tricholoma on degradation and methane yields of lignocellulosic grass. Int Biodeterior Biodegrad 104:38–45. https://doi.org/10.1016/j.ibiod.2015.05.015

    Article  Google Scholar 

  70. Li YC, Wu SY, Chu CY, Huang HC (2011) Hydrogen production from mushroom farm waste with a two-step acid hydrolysis process. Int J Hydrogen Energy 36(21):14245–14251

    Article  Google Scholar 

  71. Cheng J, Yu Y, Zhu M (2014) Enhanced biodegradation of sugarcane bagasse by Clostridium thermocellum with surfactant addition. Green Chem 16(5):2689–2695

    Article  Google Scholar 

  72. Lin HN, Hu BB, Zhu MJ (2016) Enhanced hydrogen production and sugar accumulation from spent mushroom compost by Clostridium thermocellum supplemented with PEG8000 and JFC-E. Int J Hydrogen Energy 41(4):2383–2390

    Article  Google Scholar 

  73. Lin CY, Lay CH, Sung IY, Sen B, Chen CC (2017) Anaerobic hydrogen production from unhydrolyzed mushroom farm waste by indigenous microbiota. J Biosci Bioeng 124(4):425–429. https://doi.org/10.1016/j.jbiosc.2017.05.001

    Article  Google Scholar 

  74. Huzir NM, Aziz MMA, Ismail SB, Abdullah B, Mahmood NAN, Umor NA, Muhammad SAFS (2018) Agro-industrial waste to biobutanol production: eco-friendly biofuels for next generation. Renew Sustain Energy Rev 94:476–485. https://doi.org/10.1016/j.rser.2018.06.036

    Article  Google Scholar 

  75. Shanavas S, Padmaja G, Moorthy SN, Sajeev MS, Sheriff JT (2011) Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes. Biomass Bioenerg 35(2011):901–909

    Article  Google Scholar 

  76. Liao W, Liu Y, Liu C, Wen Z, Chen S (2006) Acid hydrolysis of fibers from dairy manure. Bioresour Technol 97(14):1687–1695. https://doi.org/10.1016/j.biortech.2005.07.028

    Article  Google Scholar 

  77. McIntosh S, Vancov T (2010) Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol 101(17):6718–6727. https://doi.org/10.1016/j.biortech.2010.03.116

    Article  Google Scholar 

  78. Shi J, Chinn M, Sharmashivappa R (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99(14):6556–6564. https://doi.org/10.1016/j.biortech.2007.11.069

    Article  Google Scholar 

  79. Li T, Zhang C, Yang K-L, He J (2018) Unique genetic cassettes in a Thermoanaerobacterium contribute to simultaneous conversion of cellulose and monosugars into butanol. Sci Adv 4(3):1701475. https://doi.org/10.1126/sciadv.1701475

    Article  Google Scholar 

  80. Rajak SJ, Kim BS (2020) A holistic zero waste biorefinery approach for macroalgal biomass utilization: a review. Sci Total Environ 716:137067. https://doi.org/10.1016/j.scitotenv.2020.137067

    Article  Google Scholar 

  81. Kirchherr DR, Hekkert M (2017) Conceptualizing the circular economy: an analysis of 114 definitions. Resour Conserv Recycl 127:221–232. https://doi.org/10.1016/j.resconrec.2017.09.005

    Article  Google Scholar 

  82. Potting M, Hekkert EW, Hanemaaijer A (2017) Circular economy: measuring innovation in the product chain—policy report. PBL Netherlands Assessment Agency

    Google Scholar 

  83. Umor NA, Abdullah S, Mohamad A, Ismail S, Ismail SI, Misran A (2020) Challenges and current state-of-art of the Volvariella volvacea cultivation using agriculture waste: a brief review. In: Yaser AZ (ed) Advance of waste processing technology. Springer Nature, Singapore, pp 145–156

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors wish to thank to Southeast Asia Regional Center for Graduate Study and Research in Agriculture (SEARCA), Los Banos Philippines for financial support and Universiti Putra Malaysia as host university.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Zahrim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umor, N.A., Ismail, S., Abdullah, S. et al. Zero waste management of spent mushroom compost. J Mater Cycles Waste Manag 23, 1726–1736 (2021). https://doi.org/10.1007/s10163-021-01250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01250-3

Keywords

Navigation