Skip to main content

Advertisement

Log in

Immune-resistant mechanisms in cancer immunotherapy

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Immune checkpoint inhibitors (ICI) such as PD-1/PD-L1 antibodies (Abs) and CTLA4 Abs and T cell-based adoptive cell therapies are effective for patients with various cancers. However, response rates of ICI monotherapies are still limited due to lack of immunogenic antigens and various immune-resistant mechanisms. The latter includes adaptive immune resistance that is caused by anti-tumor T cells (e.g. PD-L1 induced by IFN-γ from T cells) and primary immune resistance that is caused by cancer cells (e.g. immunosuppressive cytokines produced by cancer cells). Further understanding of the immune-resistant mechanisms, which may be possible through comparative analyses of responders and non-responders to the immunotherapies, will lead to the identification of new diagnostic biomarkers and therapeutic targets for development of effective cancer immuno therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342:1432–1433

    Article  CAS  PubMed  Google Scholar 

  2. Iwai Y, Ishida M, Tanaka Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Okazaki T, Chikuma S, Iwai Y et al (2013) Rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14:1212–1218

    Article  CAS  PubMed  Google Scholar 

  5. Yaguchi T, Kawakami Y (2016) Cancer-induced heterogeneous immunosuppressive tumor microenvironments and their personalized modulation. Int Immunol 28:393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawakami Y, Fujita T, Matsuzaki Y et al (2004) Identification of human tumor antigens and its implication for diagnosis and treatment of cancer. Cancer Sci 95:784–791

    Article  CAS  PubMed  Google Scholar 

  7. Robbins PF, Lu YC, El-Gamil M et al (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19:747–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coulie PG, Van den Eynde BJ, van der Bruggen P et al (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14:135–146

    Article  CAS  PubMed  Google Scholar 

  9. Taube JM, Anders RA, Young GD et al (2014) Colocalization of inflammatory response with B7–h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4:127

    Google Scholar 

  10. Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spranger S, Spaapen RM, Zha Y et al (2013) Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 5:200

    Article  CAS  Google Scholar 

  12. Sade-Feldman M, Yizhak K, Bjorgaard SL et al (2018) Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175:998–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang AC, Postow MA, Orlowski RJ et al (2017) T cellinvigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Topalian SL, Drake CG et al (2015) lImmune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neubert NJ, Schmittnaegel M, Bordry N et al (2018) T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci Transl Med 10:436

    Article  CAS  Google Scholar 

  16. Kinoshita T, Kudo-Saito C, Muramatsu R et al (2017) Determination of poor prognostic immune features of tumor microenvironment in nonsmoking patients with lung adenocarcinoma. Eur J Cancer 86:15–27

    Article  PubMed  Google Scholar 

  17. Wolchok JD, Kluger H, Callahan MK et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arce F, Furness AJS, Solomon I et al (2017) Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory t cells and synergizes with pd-1 blockade to eradicate established tumors. Immunity 46:577

    Article  CAS  Google Scholar 

  19. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1

    Article  PubMed  CAS  Google Scholar 

  20. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541:321

    Article  CAS  PubMed  Google Scholar 

  21. Hellmann MD, Snyder A et al (2015) Cancer immunology mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523:231

    Article  CAS  PubMed  Google Scholar 

  24. Mlecnik B, Bindea G, Angell HK et al (2014) Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci Transl Med 6:228

    Article  CAS  Google Scholar 

  25. Zitvogel L, Kepp O, Kroemer G et al (2011) Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 8:151–160

    Article  CAS  PubMed  Google Scholar 

  26. Spranger S, Luke JJ, Bao R et al (2016) Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc Natl Acad Sci USA 113:7759–7768

    Article  CAS  Google Scholar 

  27. Peng W, Chen JQ, Liu C et al (2016) Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 6:202

    Article  CAS  PubMed  Google Scholar 

  28. Yaguchi T, Goto Y, Kido K et al (2012) Immune suppression and resistance mediated by constitutive activation of Wnt/ beta-catenin signaling in human melanoma cells. J Immunol 189:2110

    Article  CAS  PubMed  Google Scholar 

  29. Spranger S, Dai D, Horton B et al (2017) Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31:711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Toda M, Iizuka Y, Kawase T et al (2002) Immuno-viral therapy of brain tumors by combination of viral therapy with cancer vaccination using a replication-conditional HSV. Cancer Gene Ther 9:356–364

    Article  CAS  PubMed  Google Scholar 

  31. Udagawa M, Kudo-Saito C, Hasegawa G et al (2006) Enhancement of immunologic tumor regression by intratumoral administration of dendritic cells in combination with cryoablative tumor pretreatment and Bacillus Calmette-Guerin Cell Wall Skeleton Simulation. Clin Cancer Res 12:7465–7475

    Article  CAS  PubMed  Google Scholar 

  32. Osawa Y, Kojika E, Nishikawa K et al (2019) PD-L1 blockade attenuates the growth of metastatic colon cancer in cAMP-response element-binding protein (CREB)-binding protein (CBP)/β-catenin inhibitor-treated livers. Oncotarget 10:3013–3026

    Article  PubMed  PubMed Central  Google Scholar 

  33. Robertson GP, Herbst RA, Nagane M et al (1999) The chromosome 10 monosomy common in human melanomas results from loss of two separate tumor suppressor loci. Cancer Res 59:3596–3601

    CAS  PubMed  Google Scholar 

  34. Voron T, Colussi O, Marcheteau E et al (2015) VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 212:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yuan J, Zhou J, Dong Z et al (2014) Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab. Cancer Immunol Res 2:127

    Article  CAS  PubMed  Google Scholar 

  36. Hodi FS, Lawrence D, Lezcano C et al (2014) Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res 2:632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Socinski MA, Jotte RM, Cappuzzo F et al (2018) Atezolizumab for first-Line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378:2288–2301

    Article  CAS  PubMed  Google Scholar 

  38. Sumimoto H, Miyagishi M, Miyoshi H et al (2004) Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 23:6031–6039

    Article  CAS  PubMed  Google Scholar 

  39. Hugo W, Shi H, Sun L et al (2015) Non-genomic and immune evolution of melanoma acquiring MAPKi Resistance. Cell 162:1271–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sumimoto H, Imabayashi F, Iwata T et al (2006) The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 203:1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iwata-Kajihara T, Sumimoto H, Kawamura N et al (2011) Enhanced cancer immunotherapy using STAT3-depleted dendritic cells with high Th1-inducing ability and resistance to cancer cell-derived inhibitory factors. J Immunol 187:27

    Article  CAS  PubMed  Google Scholar 

  42. Poulikakos PI, Zhang C, Bollag G et al (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cooper ZA, Reuben A, Amaria RN, Wargo JA (2014) Evidence of synergy with combined BRAF-targeted therapy and immune checkpoint blockade for metastatic melanoma. Oncoimmunology 3:e954956

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wilmott JS, Long GV, Howle JR et al (2012) Selective BRAF inhibitors induce marked T cellinfiltration into human metastatic melanoma. Clin Cancer Res 18:1386

    Article  CAS  PubMed  Google Scholar 

  45. Spranger S, Gajewski TF (2018) Impact of oncogenic pathways on evasion of antitumour immune responses. Nat Rev Cancer 18:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davoli T, Uno H, Wooten E et al (2017) Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355(6322):2017

    Article  CAS  Google Scholar 

  47. Hugo W, Zaretsky JM, Sun L et al (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nakamura S, Yaguchi T, Kawamura N et al (2014) TGF-beta1 in tumor microenvironments induces immunosuppression in the tumors and sentinel lymph nodes and promotes tumor progression. J Immunother 37:63

    Article  CAS  PubMed  Google Scholar 

  49. Tauriello DVF, Palomo-Ponce S, Stork D et al (2018) TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554:538

    Article  CAS  PubMed  Google Scholar 

  50. Mariathasan S, Turley SJ, Nickles D et al (2018) TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554:544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kudo-Saito C, Shirako H, Takeuchi T et al (2009) Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15:195

    Article  CAS  PubMed  Google Scholar 

  52. Lan Y, Zhang D, Xu C et al (2018) Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci Transl Med 10:424

    Article  CAS  Google Scholar 

  53. Satoh K, Yachida S, Sugimoto M et al (2018) Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proc Natl Acad Sci USA 114:7697

    Google Scholar 

  54. Beckermann KE, Dudzinski SO, Rathmell JC (2017) Dysfunctional T cell metabolism in the tumor microenvironment. Cytokine Growth Factor Rev 35:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cascone T, McKenzie JA, Mbofung RM et al (2018) Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab 27:977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scharping NE, Menk AV, Moreci RS et al (2016) The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45:374–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eikawa S, Nishida M, Mizukami S et al (2015) Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci USA 112:1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kunisada Y, Eikawa S, Tomonobu N et al (2017) Attenuation of CD4+CD25+ regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug. EBioMedicine 25:154

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chamoto K, Chowdhury PS, Kumar A et al (2017) Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci USA 114:761

    Article  CAS  Google Scholar 

  60. Rath M, Müller I, Kropf P et al (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5:532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Santoro SP, Wang LP et al (2014) Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 20:607–615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kidani Y, Bensinger S (2016) Modulating cholesterol homeostasis to build a better T cell. Cell Metab 23:963

    Article  CAS  PubMed  Google Scholar 

  63. Ohta A (2016) A metabolic immune checkpoint: adenosine in tumor microenvironment. Front Immunol 7:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Morello S, Capone M, Sorrentino C et al (2017) Soluble CD73 as Biomarker in patients with metastatic melanoma patients treated with Nivolumab. J Transl Med 15:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chowell D, Morris LGT, Grigg CM et al (2018) Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359:582

    Article  CAS  PubMed  Google Scholar 

  66. Routy B, Le Chatelier E, Derosa L et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91

    Article  CAS  PubMed  Google Scholar 

  67. Gopalakrishnan V, Spencer CN, Nezi L et al (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359:97

    Article  CAS  PubMed  Google Scholar 

  68. Matson V, Fessler J, Bao R et al (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tanoue T, Morita S, Plichta DR et al (2019) A defined consortium of human gut commensals induces CD8 T cells and modulates host microbial and cancer immunity. Nature 565:600–605

    Article  CAS  PubMed  Google Scholar 

  70. Derosa L, Hellmann MD, Spaziano M et al (2018) Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small cell lung cancer. Ann Oncol 29:1437–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang Z, Aguilar EG, Luna JI et al (2019) Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med 25:141–151

    Article  CAS  PubMed  Google Scholar 

  72. Naik GS, Waikar S, Johns AEW et al (2019) Complex inter-relationship of body mass index, gender and serum creatinine on survival: exploring the obesity paradox in melanoma patients treated with checkpoint inhibition. J Immunother Cancer 7:89

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zaretsky JM, Garcia-Diaz A, Shin DS et al (2016) Mutations associated with acquired resistance to pd-1 blockade in melanoma. N Engl J Med 375:819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Restifo NP, Marincola FM, Kawakami Y et al (1996) Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst 88:100

    Article  CAS  PubMed  Google Scholar 

  75. Sade-Feldman M, Jiao YJ, Chen JH et al (2017) Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun 8:1136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Gettinger S, Choi J, Hastings K et al (2017) Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov 7:1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Patel SJ, Sanjana NE, Kishton RJ et al (2017) Identification of essential genes for cancer immunotherapy. Nature 548:537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Manguso RT, Pope HW, Zimmer MD et al (2017) In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547:413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-aid for Scientific Research (26221005) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and the Project for Cancer Research And Therapeutic Evolution (P-CREATE) (16cm0106305h0001) from Japan Agency for Medical Research and Development (AMED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Kawakami.

Ethics declarations

Conflict of interest

Y. Kawakami is an advisor for Taiho Pharma Co. Ltd., has received honoraria from Ono Pharmaceutical Co. Ltd., Bristol-Myers Squibb, MSD, Chugai, AstraZeneca, and has received research funding from Ono Pharmaceutical Co. Ltd., Bristol-Myers Squibb, Kowa, JSR, Dainippon Sumitomo Pharma Co. Ltd., and Carna BioSciences, Inc. Other co-authors have no conflict of interest.

Ethical standards

The authors comply with the ethical standards of the journal.

Ethical approval

All of the authors’ studies with human participants are approved by the Keio University ethics committee and appropriately performed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawakami, Y., Ohta, S., Sayem, M.A. et al. Immune-resistant mechanisms in cancer immunotherapy. Int J Clin Oncol 25, 810–817 (2020). https://doi.org/10.1007/s10147-019-01611-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-019-01611-x

Keywords

Navigation