Skip to main content
Log in

Detection of the Destruction Mechanism of Perfluorinated Elastomer (FFKM) Network under Thermo-oxidative Aging Conditions

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The changes of crosslinking network of perfluorinated elastomer (FFKM) cured by TAIC and DBPH under thermo-oxidative aging conditions were investigated. Two competitive processes including post-curing and network destruction occur simultaneously, which directly affect the storage modulus and crosslinking density. With the increase of aging temperature, the network destruction becomes dominant. FTIR and XPS characterizations further reveal that the network destruction happens preferentially on the crosslink points of TAIC structure, and the post-curing is mainly caused by the decomposition of residual curing agent DBPH. Unlike the easier breaking of TAIC structure in the crosslinking network, both the backbone and the pendent groups of FFKM itself are much more stable. To further figure out the destruction mechanism, TGA-FTIR-GC-MS test was also conducted and a schematic degradation process of TAIC structure was proposed. It is found that the destruction of TAIC crosslinking points happens first on the unstable exocyclic C-N bonds and the intermediate ring radicals could eventually decompose into volatile hydrogen isocyanate (HCNO) under extreme condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Améduri, B.; Boutevin, B.; Kostov, G. Fluoroelastomers: synthesis, properties and applications. Prog. Polym. Sci. 2001, 26, 105–187.

    Article  Google Scholar 

  2. Kader, M. A.; Bhowmick, A. K. Acrylic rubber-fluorocarbon rubber miscible blends: effect of curatives and fillers on cure, mechanical, aging, and swelling properties. J. Appl. Polym. Sci. 2003, 89, 1442–1452.

    Article  CAS  Google Scholar 

  3. Taguet, A.; Ameduri, B.; Boutevin, B. Crosslinking of vinylidene fluoride-containing fluoropolymers. in Advances in Polymer Science, Springer, Berlin, Heidelberg, 2005, 127–212.

    Google Scholar 

  4. Subhash V. Gangal. Perfluorinated polymers. In Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley &Sons Inc. 2004.

  5. Arrigoni, S.; Merli, F. New perfluoroelastomer for sealing at low temperatures. Seal. Technol. 2010, 2010, 9–13.

    Article  Google Scholar 

  6. Lou, W.; Zhang, W.; Jin, T.; Liu, X.; Wang, H. Stress-thermal oxidative aging behavior of hydrogenated nitrile rubber seals. J. Appl. Polym. Sci. 2019, 136, 47014.

    Article  Google Scholar 

  7. Xia, L.; Wang, M.; Wu, H.; Guo, S. Effects of cure system and filler on chemical aging behavior of fluoroelastomer in simulated proton exchange membrane fuel cell environment. Int. J. Hydrogen Energy 2016, 41, 2887–2895.

    Article  CAS  Google Scholar 

  8. Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.; Almdal, K.; Rehmeier, H.; Christensen, A. Chemical degradation of fluoroelastomer in an alkaline environment. Polym. Degrad. Stabil. 2004, 83, 195–206.

    Article  CAS  Google Scholar 

  9. Heller, M.; Legare, J.; Wang, S.; Fukuhara, S. Thermal stability and sealing performance of perfluoroelastomer seals as a function of crosslinking chemistry. J. Vac. Sci. Technol. A 1999, 17, 2119–2124.

    Article  CAS  Google Scholar 

  10. Sugama, T.; Pyatina, T.; Redline, E.; McElhanon, J.; Blankenship, D. Degradation of different elastomeric polymers in simulated geothermal environments at 300 °C. Polym. Degrad. Stabil. 2015, 120, 328–339.

    Article  CAS  Google Scholar 

  11. Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.; Hvilsted, S.; Almdal, K. Chemical degradation of an uncrosslinked pure fluororubber in an alkaline environment. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 6216–6229.

    Article  CAS  Google Scholar 

  12. Knight, J. G.; Wright, W. W. The thermal degradation of some fluorine-containing elastomers. Thermochim. Acta 1983, 60, 187–194.

    Article  CAS  Google Scholar 

  13. Li, D.; Liao, M. Dehydrofluorination mechanism, structure and thermal stability of pure fluoroelastomer (poly(VDF-ter-HFP-ter-TFE) terpolymer) in alkaline environment. J. Fluorine Chem. 2017, 201, 55–67.

    Article  CAS  Google Scholar 

  14. Wang, Q. L.; Pei, J. K.; Li, G.; Niu, Y. H.; Li, G. X. Accelerated aging behaviors and mechanism of fluoroelastomer in lubricating oil medium. Chinese J. Polym. Sci. 2020, 38, 853–866.

    Article  CAS  Google Scholar 

  15. Kömmling, A.; Jaunich, M.; Goral, M.; Wolff, D. Insights for lifetime predictions of O-ring seals from five-year long-term aging tests. Polym. Degrad. Stabil. 2020, 179, 109–278.

    Article  Google Scholar 

  16. Li, G.; Zhuo, W. Y.; Yang, G.; Niu, Y. H.; Li, G. X. Study on the aging behaviors and mechanism of nitrile rubber under multiple coupled factors. Acta Polymerica Sinica (in Chinese) 2021, 52, 762–774.

    CAS  Google Scholar 

  17. Liu, Q.; Li, J.; Cong, C.; Cui, H.; Xu, L.; Zhang, Y.; Meng, X.; Zhou, Q. Thermal and thermo-oxidative degradation of tetrafluoroethylene-propylene elastomer above 300 °C. Polym. Degrad. Stabil. 2020, 177, 109–180.

    Article  Google Scholar 

  18. Smith, J. F.; Perkins G. T. The mechanism of post cure of viton A Fluorocarbon elastomer. J. Appl. Polym. Sci. 1961, 5, 460–467.

    Article  Google Scholar 

  19. Zhao, H.; Chen, J.; Zhang, H.; Shang, Y.; Wang, X.; Han, B.; Li, Z. J. Theoretical study on the reaction of triallyl isocyanurate in the UV radiation cross-linking of polyethylene. RSC Adv. 2017, 7, 37095–37104.

    Article  CAS  Google Scholar 

  20. Yang, S. L.; Wu, Z. H.; Yang, W.; Yang, M. B. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym. Test. 2008, 27, 957–963.

    Article  CAS  Google Scholar 

  21. Qla, B.; Jia, L.; Yja, B.; Cca, B.; Lx, C.; Ying, Z.; Xma, B.; Qza, B. Effect of crosslinked structure on the chemical degradation of EPDM rubber in an acidic environment. Polym. Degrad. Stabil. 2021, 185, 109475.

    Article  Google Scholar 

  22. Muroga, S.; Yu, T.; Hikima, Y.; Ata, S.; Hata, K. New evaluation method for the curing degree of rubber and its nanocomposites using ATR-FTIR spectroscopy. Polym. Test. 2020, 93, 106993.

    Article  Google Scholar 

  23. Shogo, Y.; Hideyuki, S.; Seisuke, A.; Yasumasa, S.; Ayumi, N.; Junji, M. A thermal oxidative degradation study of triallyl isocyanurate crosslinking moiety in fluorinated rubber by two-dimensional infrared correlation spectroscopy. Vib. Spectrosc. 2018, 98, 30–34.

    Article  Google Scholar 

  24. Saville, B.; Watson, A. Structural characterization of sulfurvulcanized rubber networks. Rubber Chem. Technol. 1967, 40, 100–148.

    Article  CAS  Google Scholar 

  25. Hagen, R.; Salmén, L.; Stenberg, B. Effects of the type of crosslink on viscoelastic properties of natural rubber. J. Polym. Sci., Part B: Polym. Phys. 1996, 34, 1997–2006.

    Article  CAS  Google Scholar 

  26. Guth, E. Theory of filler reinforcement. J. Appl. Phys. 1945, 18, 596–604.

    CAS  Google Scholar 

  27. Xu, W. Q.; Lv, Y. D.; Kong, M. Q.; Huang, Y. J.; Li, G. X. Study on properties of waterborne polyurethane/polydopamine nanoparticles prepared by in situ polymerization. Acta Polymerica Sinica (in Chinese) 2019, 50, 710–720.

    CAS  Google Scholar 

  28. Hou, F.; Song, Y.; Zheng, Q. Payne effect of thermo-oxidatively aged isoprene rubber vulcanizates. Polymer 2020, 195, 122432.

    Article  CAS  Google Scholar 

  29. Barjasteh, E.; Kar, N. K.; Nutt, S. Effect of filler on thermal aging of composites for next-generation power lines. Compos. Part A 2011, 42, 1873–1882.

    Article  Google Scholar 

  30. Morelli, J. J.; Fry, C. G.; Grayson, M. A.; Lind, A. C.; Wolf, C. J. The thermal oxidative degradation of an ethylene-tetrafluoroethylene-copolymer-based electrical wire insulation. J. Appl. Polym. Sci. 1991, 43, 601–611.

    Article  CAS  Google Scholar 

  31. Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.; Rehmeier, H. K.; Abildgaard, H.; Almdal, K. Chemical degradation of crosslinked ethylene-propylene-diene rubber in an acidic environment. Part II. Effect of peroxide crosslinking in the presence of a coagent. Polym. Degrad. Stabil. 2006, 91, 81–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G. X. Li acknowledges the financial support from the National Natural Science Foundation of China (No. 51721091). Y. H. Niu acknowledges the financial supports from the National Natural Science Foundation of China (Nos. 51873125 and 52073184) and Research Foundation (International Program) of Science and Technology Department of Sichuan Province (No. 2019YFH0027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Hua Niu or Guang-Xian Li.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2692_MOESM1_ESM.pdf

Detection of the Destruction Mechanism of Perfluorinated Elastomer (FFKM) Network under Thermo-oxidative Aging Conditions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, WY., Wang, QL., Li, G. et al. Detection of the Destruction Mechanism of Perfluorinated Elastomer (FFKM) Network under Thermo-oxidative Aging Conditions. Chin J Polym Sci 40, 504–514 (2022). https://doi.org/10.1007/s10118-022-2692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2692-6

Keywords

Navigation