Skip to main content

Advertisement

Log in

Low-level laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this in vitro study was to evaluate the effects of low-level laser therapy (LLLT) at different energy intensities on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under healthy and inflammatory microenvironments. Human BMSCs and BMSCs from inflammatory conditions (i-BMSCs, BMSCs treated with tumor necrosis factor α; TNF-α) were subject to LLLT (Nd:YAG;1064 nm) at different intensities. We designed one control group (without irradiation) and four testing groups (irradiation at 2, 4, 8, and 16 J/cm2) for both BMSCs and i-BMSCs. Cell proliferation was measured using colony-forming unit fibroblast assay and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay. Osteogenic capacity of cells was determined by alkaline phosphatase (ALP) staining, ALP activity assay, Alizarin Red S staining and the mRNA transcript levels of genes runt-related transcription factor 2 (Runx2), ALP, and osteocalcin. Moreover, the effects of LLLT on secretion of TNF-α in BMSCs and i-BMSCs were measured by enzyme-linked immunosorbent assay. Our results demonstrated LLLT could significantly promote BMSC proliferation and osteogenesis at densities of 2 and 4 J/cm2. LLLT at density of 8 J/cm2 could promote the proliferation and osteogenesis of i-BMSCs. However, LLLT at 16 J/cm2 significantly suppressed the proliferation and osteogenesis of BMSCs both in healthy and in inflammatory microenvironment. Moreover, we also found that the expression of TNF-α was obviously inhibited by LLLT at 4, 8, and 16 J/cm2, in an inflammatory microenvironment. Considering these findings, LLLT could improve current in vitro methods of differentiating BMSCs under healthy and inflammatory microenvironments prior to transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Farre-Guasch E, Wolff J, Helder MN, Schulten EA, Forouzanfar T, Klein-Nulend J (2015) Application of additive manufacturing in oral and maxillofacial surgery. J Oral Maxillofac Surg 73(12):2408–2418

    Article  PubMed  Google Scholar 

  2. Martin AD, McCulloch RG (1987) Bone dynamics: stress, strain and fracture. J Sports Sci 5(2):155–163

    Article  CAS  PubMed  Google Scholar 

  3. Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E, Gomez-Barrena E, Granchi D, Kassem M, Konttinen YT, Mustafa K, Pioletti DP, Sillat T, Finne-Wistrand A (2011) Bone regeneration and stem cells. J Cell Mol Med 15(4):718–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390

    CAS  PubMed  Google Scholar 

  5. Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28(8):875–884

    Article  CAS  PubMed  Google Scholar 

  6. Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7(6):259–264

    Article  CAS  PubMed  Google Scholar 

  7. Cancedda R, Bianchi G, Derubeis A, Quarto R (2003) Cell therapy for bone disease: a review of current status. Stem Cells 21(5):610–619

    Article  CAS  PubMed  Google Scholar 

  8. Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res (355 Suppl):S247–56

  9. Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6(2):125–134

    Article  CAS  PubMed  Google Scholar 

  10. Chen W, Zhou H, Weir MD, Bao C, Xu HH (2012) Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration. Acta Biomater 8(6):2297–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B, Vunjak-Novakovic G, Kaplan D (2005) Silk implants for the healing of critical size bone defects. Bone 37(5):688–698

    Article  CAS  PubMed  Google Scholar 

  12. Liu W, Konermann A, Guo T, Jäger A, Zhang L, Jin Y (2014) Canonical Wnt signaling differently modulates osteogenic differentiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament under inflammatory conditions. Biochim Biophys Acta 1840(3):1125–1134

    Article  CAS  PubMed  Google Scholar 

  13. Cui Y, Lu S, Tan H, Li J, Zhu M, Xu Y (2016) Silencing of long non-coding RNA NONHSAT009968 ameliorates the staphylococcal protein A-inhibited osteogenic differentiation in human bone mesenchymal stem cells. Cell Physiol Biochem 39(4):1347–1359

    Article  CAS  PubMed  Google Scholar 

  14. Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374(9705):1897–1908

    Article  PubMed  Google Scholar 

  15. Tim CR, Bossini PS, Kido HW, Malavazi I, von Zeska Kress MR, Carazzolle MF, Parizotto NA, Rennó AC (2005) Effects of low-level laser therapy on the expression of osteogenic genes related in the initial stages of bone defects in rats : a microarray analysis. Lasers Med Sci 30(9):2325–2333

    Article  Google Scholar 

  16. Tim CR, Pinto KN, Rossi BR, Fernandes K, Matsumoto MA, Parizotto NA, Rennó AC (2014) Low-level laser therapy enhances the expression of osteogenic factors during bone repair in rats. Lasers Med Sci 29(1):147–156

    Article  PubMed  Google Scholar 

  17. Fávaro-Pípi E, Ribeiro DA, Ribeiro JU, Bossini P, Oliveira P, Parizotto NA, Tim C, de Araújo HS, Renno AC (2011) Low-level laser therapy induces differential expression of osteogenic genes during bone repair in rats. Photomed Laser Surg 29(5):311–317

    Article  CAS  PubMed  Google Scholar 

  18. Pinto KN, Tim CR, Crovace MC, Matsumoto MA, Parizotto NA, Zanotto ED, Peitl O, Rennó AC (2013) Effects of biosilicate scaffolds and low-level laser therapy on the process of bone healing. Photomed Laser Surg 31(6):252–260

    Article  CAS  PubMed  Google Scholar 

  19. Wu YH, Wang J, Gong DX, Gu HY, Hu SS, Zhang H (2012) Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers Med Sci 27(2):509–519

    Article  PubMed  Google Scholar 

  20. Min KH, Byun JH, Heo CY, Kim EH, Choi HY, Pak CS (2015) Effect of low-level laser therapy on human adipose-derived stem cells: in vitro and in vivo studies. Aesthet Plast Surg 39(5):778–782

    Article  Google Scholar 

  21. Pereira LO, Longo JP, Azevedo RB (2012) Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch Oral Biol 57(8):1079–1085

    Article  PubMed  Google Scholar 

  22. Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers Med Sci 27(2):423–430

    Article  PubMed  Google Scholar 

  23. Liu N, Shi S, Deng M, Tang L, Zhang G, Liu N, Ding B, Liu W, Liu Y, Shi H, Liu L, Jin Y (2011) High levels of β-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway. J Bone Miner Res 26(9):2082–2095

    Article  CAS  PubMed  Google Scholar 

  24. Mester E, Szende B, Gärtner P (1968) The effect of laser beams on the growth of hair in mice. Radiobiol Radiother (Berl) 9(5):621–626

    CAS  Google Scholar 

  25. Carroll JD, Milward MR, Cooperb PR, Hadis M, Palin WM (2014) Developments in low level light therapy (LLLT) for dentistry. Dent Mater 30(5):465–475

    Article  Google Scholar 

  26. Bouvet-Gerbettaz S, Merigo E, Carle J-PRGF, Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 41(4):291–297

    Article  PubMed  Google Scholar 

  27. Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5(2):58–62

    PubMed  PubMed Central  Google Scholar 

  28. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754

    Article  CAS  Google Scholar 

  29. Li C, Shi C, Kim J, Chen Y, Ni S, Jiang L, Zheng C, Li D, Hou J, Taichman RS, Sun H (2015) Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling. J Dent Res 94(3):455–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7(4):358–383

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was financially supported by grants from the National Natural Science Foundation of China (No. 81701029), the Natural Science Foundation of Gansu Province (No. 1606RJZA185 and 17JR5RA335), and the Autonomous Research Project of State Key Laboratory of Military Stomatology (No. 2016KB02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinong Qiu.

Ethics declarations

Ethics statement

This article does not contain any studies with human participants performed by any of the authors. Human cancellous bone fragments and blood were collected based on the treatment needs unrelated to this study. Each donor provided written informed consent. All procedures performed in studies were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wu, F., Liu, C. et al. Low-level laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition. Lasers Med Sci 34, 169–178 (2019). https://doi.org/10.1007/s10103-018-2673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2673-8

Keywords

Navigation