Skip to main content

Advertisement

Log in

Cardio-light: nitric oxide uncaged

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Photobiomodulation (PB) is a utilization of low-level laser therapy (LLLT) in the far red (R) to near infrared (NIR) spectrum (600–1000 nm) to wield its therapeutic effects. To explore the therapeutic potential of biomodulation of different tissues, LLLT has been extensively researched, especially in the light of its very low side effect profile. We believe there is an opportunity to unearth its dynamic effects on the coronaries which can be promising for the patients with chronic stable angina. NIR treatment of the heart may be protective on patients after acute myocardial infarction or on ischemic heart conditions that are not accessible to current revascularization procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Owen-Reece H, Smith M, Elwell CE, Goldstone JC (1999) Near infrared spectroscopy. Br J Anaesth 82(3):418–426

    Article  PubMed  CAS  Google Scholar 

  2. Bozkurt A, Onaral B (2004) Safety assessment of near infrared light emitting diodes for diffuse optical measurements. Biomed Eng Online 3(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stadler I, Lanzafame RJ, Oskoui P, Zhang R-Y, Coleman J, Whittaker M (2004) Alteration of skin temperature during low-level laser irradiation at 830 nm in a mouse model. Photomed Laser Surg 22(3):227–231

    Article  PubMed  Google Scholar 

  4. Colombo F, Neto AAPV, de Sousa APC, Marchionni AMT, Pinheiro ALB, de A. Reis SR (2013) Effect of low-level laser therapy (λ660 nm) on angiogenesis in wound healing: a immunohistochemical study in a rodent model. Braz Dent J 24(4):308–312

    Article  PubMed  Google Scholar 

  5. Dungel P et al (2014) Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers Surg Med 46(10):773–780

    Article  PubMed  Google Scholar 

  6. Weiss N, Oron U (1992) Enhancement of muscle regeneration in the rat gastrocnemius muscle by low energy laser irradiation. Anat Embryol (Berl) 186(5):497–503

    Article  CAS  Google Scholar 

  7. Bibikova A, Oron U (1993) Promotion of muscle regeneration in the toad (Bufo viridis) gastrocnemius muscle by low-energy laser irradiation. Anat Rec 235(3):374–380

    Article  PubMed  CAS  Google Scholar 

  8. Bibikova A, Belkin V, Oron U (1994) Enhancement of angiogenesis in regenerating gastrocnemius muscle of the toad (Bufo viridis) by low-energy laser irradiation. Anat Embryol (Berl) 190(6):597–602

    Article  CAS  Google Scholar 

  9. Bibikova A, Oron U (1994) Attenuation of the process of muscle regeneration in the toad gastrocnemius muscle by low energy laser irradiation. Lasers Surg Med 14(4):355–361

    Article  PubMed  CAS  Google Scholar 

  10. Toyokawa H et al (2003) Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp Biol Med (Maywood) 228(6):724–729

    Article  CAS  Google Scholar 

  11. Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23(5):492–496

    Article  PubMed  CAS  Google Scholar 

  12. Minatel DG, Frade MAC, Franca SC, Enwemeka CS (2009) Phototherapy promotes healing of chronic diabetic leg ulcers that failed to respond to other therapies. Lasers Surg Med 41(6):433–441

    Article  PubMed  Google Scholar 

  13. Yaakobi T, Maltz L, Oron U (1996) Promotion of bone repair in the cortical bone of the tibia in rats by low energy laser (He-Ne) irradiation. Calcif Tissue Int 59(4):297–300

    Article  PubMed  CAS  Google Scholar 

  14. Whelan HT et al (2002) NASA light-emitting diodes for the prevention of oral mucositis in pediatric bone marrow transplant patients. J Clin Laser Med Surg 20(6):319–324

    Article  PubMed  Google Scholar 

  15. Assia E, Rosner M, Belkin M, Solomon A, Schwartz M (1989) Temporal parameters of low energy laser irradiation for optimal delay of post-traumatic degeneration of rat optic nerve. Brain Res 476(2):205–212

    Article  PubMed  CAS  Google Scholar 

  16. Wong-Riley MT, Bai X, Buchmann E, Whelan HT (2001) Light-emitting diode treatment reverses the effect of TTX on cytochrome oxidase in neurons. Neuroreport 12(14):3033–3037

    Article  PubMed  CAS  Google Scholar 

  17. Lapchak PA, Wei J, Zivin JA (2004) Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits. Stroke 35(8):1985–1988

    Article  PubMed  Google Scholar 

  18. Hirschl M, Katzenschlager R, Francesconi C, Kundi M (2004) Low level laser therapy in primary Raynaud’s phenomenon--results of a placebo controlled, double blind intervention study. J Rheumatol 31(12):2408–2412

    PubMed  Google Scholar 

  19. Christie A, Jamtvedt G, Dahm KT, Moe RH, Haavardsholm EA, Hagen KB (2007) Effectiveness of nonpharmacological and nonsurgical interventions for patients with rheumatoid arthritis: an overview of systematic reviews. Phys Ther 87(12):1697–1715

    Article  PubMed  Google Scholar 

  20. Vasseljen OJ, Hoeg N, Kjeldstad B, Johnsson A, Larsen S (1992) Low level laser versus placebo in the treatment of tennis elbow. Scand J Rehabil Med 24(1):37–42

    PubMed  Google Scholar 

  21. Stasinopoulos D, Stasinopoulos I, Pantelis M, Stasinopoulou K (2009) Comparing the effects of exercise program and low-level laser therapy with exercise program and polarized polychromatic non-coherent light (bioptron light) on the treatment of lateral elbow tendinopathy. Photomed Laser Surg 27(3):513–520

    Article  PubMed  Google Scholar 

  22. Pereira TS et al (2014) Efficacy of red and infrared lasers in treatment of temporomandibular disorders--a double-blind, randomized, parallel clinical trial. Cranio 32(1):51–56

    Article  PubMed  Google Scholar 

  23. Stasinopoulos D, Stasinopoulos I, Johnson MI (2005) Treatment of carpal tunnel syndrome with polarized polychromatic noncoherent light (Bioptron light): a preliminary, prospective, open clinical trial. Photomed Laser Surg 23(2):225–228

    Article  PubMed  CAS  Google Scholar 

  24. Lanzafame RJ, Blanche RR, Bodian AB, Chiacchierini RP, Fernandez-Obregon A, Kazmirek ER (2013) The growth of human scalp hair mediated by visible red light laser and LED sources in males. Lasers Surg Med 45(8):487–495

    Article  PubMed  Google Scholar 

  25. Lanzafame RJ, Blanche RR, Chiacchierini RP, Kazmirek ER, Sklar JA (2014) The growth of human scalp hair in females using visible red light laser and LED sources. Lasers Surg Med 46(8):601–607

    Article  PubMed  Google Scholar 

  26. Oron U et al (2001) Low-energy laser irradiation reduces formation of scar tissue after myocardial infarction in rats and dogs. Circulation 103(2):296–301

    Article  PubMed  CAS  Google Scholar 

  27. Monich V, Drugova O, Lazukin V, Bavrina A (2011) Low-power light and isolated rat hearts after ischemia of myocardium. J Photochem Photobiol B 105(1):21–24

    Article  PubMed  CAS  Google Scholar 

  28. de Sousa APC et al (2013) Laser and LED phototherapies on angiogenesis. Lasers Med Sci 28(3):981–987

    Article  PubMed  Google Scholar 

  29. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25(2):102–106

    Article  PubMed  Google Scholar 

  30. Plass CA, Loew HG, Podesser BK, Prusa AM (2012) Light-induced vasodilation of coronary arteries and its possible clinical implication. Ann Thorac Surg 93(4):1181–1186

    Article  PubMed  Google Scholar 

  31. Yu C-H, Lin H-P, Chen H-M, Yang H, Wang Y-P, Chiang C-P (2009) Comparison of clinical outcomes of oral erythroleukoplakia treated with photodynamic therapy using either light-emitting diode or laser light. Lasers Surg Med 41(9):628–633

    Article  PubMed  Google Scholar 

  32. Dweik RA et al (1998) Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism. J Clin Invest 101(3):660–666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gautier C, van Faassen E, Mikula I, Martasek P, Slama-Schwok A (2006) Endothelial nitric oxide synthase reduces nitrite anions to NO under anoxia. Biochem Biophys Res Commun 341(3):816–821

    Article  PubMed  CAS  Google Scholar 

  34. Godecke A (2006) On the impact of NO-globin interactions in the cardiovascular system. Cardiovasc Res 69(2):309–317

    Article  PubMed  CAS  Google Scholar 

  35. Hendgen-Cotta UB et al (2008) Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A 105(29):10256–10261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Huang Z et al (2005) Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. J Clin Invest 115(8):2099–2107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Cosby K et al (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9(12):1498–1505

    Article  PubMed  CAS  Google Scholar 

  38. Nagababu E, Ramasamy S, Abernethy DR, Rifkind JM (2003) Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction. J Biol Chem 278(47):46349–46356

    Article  PubMed  CAS  Google Scholar 

  39. Crawford JH et al (2006) Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood 107(2):566–574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Shiva S et al (2007) Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res 100(5):654–661

    Article  PubMed  CAS  Google Scholar 

  41. Lohr NL et al (2009) Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: potential role in cardioprotection. J Mol Cell Cardiol 47(2):256–263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7(2):156–167

    Article  PubMed  CAS  Google Scholar 

  43. Castello PR, David PS, McClure T, Crook Z, Poyton RO (2006) Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 3(4):277–287

    Article  PubMed  CAS  Google Scholar 

  44. Karu TI, Pyatibrat LV, Kalendo GS (2004) Photobiological modulation of cell attachment via cytochrome c oxidase. Photochem Photobiol Sci 3(2):211–216

    Article  PubMed  CAS  Google Scholar 

  45. Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI (2005) Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B 81(2):98–106

    Article  PubMed  CAS  Google Scholar 

  46. Wong-Riley MTT et al (2005) Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 280(6):4761–4771

    Article  PubMed  CAS  Google Scholar 

  47. Negrerie M, Bouzhir L, Martin JL, Liebl U (2001) Control of nitric oxide dynamics by guanylate cyclase in its activated state. J Biol Chem 276(50):46815–46821

    Article  PubMed  CAS  Google Scholar 

  48. Li H, Hemann C, Abdelghany TM, El-Mahdy MA, Zweier JL (2012) Characterization of the mechanism and magnitude of cytoglobin-mediated nitrite reduction and nitric oxide generation under anaerobic conditions. J Biol Chem 287(43):36623–36633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Singh RJ, Hogg N, Joseph J, Kalyanaraman B (1995) Photosensitized decomposition of S-nitrosothiols and 2-methyl-2-nitrosopropane. Possible use for site-directed nitric oxide production. FEBS Lett 360(1):47–51

    Article  PubMed  CAS  Google Scholar 

  50. Singh RJ, Hogg N, Joseph J, Kalyanaraman B (1996) Mechanism of nitric oxide release from S-nitrosothiols. J Biol Chem 271(31):18596–18603

    Article  PubMed  CAS  Google Scholar 

  51. Batenburg WW, Kappers MHW, Eikmann MJ, Ramzan SNA, de Vries R, Danser AHJ (2009) Light-induced vs. bradykinin-induced relaxation of coronary arteries: do S-nitrosothiols act as endothelium-derived hyperpolarizing factors? J Hypertens 27(8):1631–1640

    Article  PubMed  CAS  Google Scholar 

  52. R Z et al (2009) Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J Mol Cell Cardiol 46(1):4–14

    Article  CAS  Google Scholar 

  53. Lohr NL, Ninomiya JT, Warltier DC, Weihrauch D (2013) Far red/near infrared light treatment promotes femoral artery collateralization in the ischemic hindlimb. J Mol Cell Cardiol 62:36–42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Keszler A, Lindemer B, Weihrauch D, Jones D, Hogg N, Lohr NL (2017) Red/near infrared light stimulates release of an endothelium dependent vasodilator and rescues vascular dysfunction in a diabetes model. Free Radic Biol Med 113:157–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zaidi M et al (2013) Transient repetitive exposure to low level light therapy enhances collateral blood vessel growth in the ischemic hindlimb of the tight skin mouse. Photochem Photobiol 89(3):709–713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Keszler A et al (2014) Far red/near infrared light-induced protection against cardiac ischemia and reperfusion injury remains intact under diabetic conditions and is independent of nitric oxide synthase. Front Physiol 5:305

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kazemi Khoo N, Babazadeh K, Lajevardi M, Dabaghian FH, Mostafavi E (2014) Application of low-level laser therapy following coronary artery bypass grafting (CABG) surgery. J Lasers Med Sci 5(2):86–91

    PubMed  PubMed Central  Google Scholar 

  58. Kindzelski BA, Zhou Y, Horvath KA (2015) Transmyocardial revascularization devices: technology update. Med Devices (Auckl) 8:11–19

    Google Scholar 

  59. Bjordal JM, Johnson MI, Lopes-Martins RAB, Bogen B, Chow R, Ljunggren AE (2007) Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials. BMC Musculoskelet Disord 8:51

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bjordal JM et al (2008) A systematic review with procedural assessments and meta-analysis of low level laser therapy in lateral elbow tendinopathy (tennis elbow). BMC Musculoskelet Disord 9:75

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gorshkova OP, Shuvaeva VN, Dvoretsky DP (2013) Role of nitric oxide in responses of pial arterial vessels to low-intensity red laser irradiation. Bull Exp Biol Med 155(5):598–600

    Article  PubMed  CAS  Google Scholar 

  62. Samoilova KA, Zhevago NA, Petrishchev NN, Zimin AA (2008) Role of nitric oxide in the visible light-induced rapid increase of human skin microcirculation at the local and systemic levels: II. Healthy volunteers. Photomed Laser Surg 26(5):443–449

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anandbir Singh Bath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This is a review article and non-human research study so ethics approval was not required.

Informed consent

This is a review article and non-human research study so informed consent was not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bath, A.S., Gupta, V. Cardio-light: nitric oxide uncaged. Lasers Med Sci 34, 405–409 (2019). https://doi.org/10.1007/s10103-018-2671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2671-x

Keywords

Navigation