Skip to main content
Log in

Application of cationized magnetoferritin for magnetic field-assisted delivery of short interfering RNA in vitro

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Cationized magnetoferritin is used for development of a simple, efficient, and fast delivery of short interference RNA into cells using combination of magnetophoresis for pre-concentration of siRNA-magnetoferritin complex on the surface of plated cells with subsequent application of nanosecond laser pulses producing stress waves in transfection chamber, which permeabilize cell membrane for the facilitated delivery of siRNA into the cell interior. As has been quantified using siRNA inducing cell death assay, by combination of these two physical factors we have obtained high efficiency for tested three different human carcinoma cells. Proposed method of gene silencing based on cationized magnetoferritin is a versatile and easily accessible platform with many possible applications in gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. https://doi.org/10.1038/35888

    Article  CAS  Google Scholar 

  2. Battistella M, Marsden PA (2015) Advances, nuances, and potential pitfalls when exploiting the therapeutic potential of RNA interference. Clin Pharmacol Ther 97:79–87. https://doi.org/10.1002/cpt.8

    Article  CAS  PubMed  Google Scholar 

  3. Li C, Wallace S (2008) Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev 60:886–898. https://doi.org/10.1016/j.addr.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tan SJ, Kiatwuthinon P, Roh YH, Kahn JS, Luo D (2011) Engineering nanocarriers for siRNA delivery. Small 7:841–856. https://doi.org/10.1002/smll.201001389

    Article  CAS  PubMed  Google Scholar 

  5. Choi YS, Lee MY, David AE, Park YS (2014) Nanoparticles for gene delivery: therapeutic and toxic effects. Mol Cell Toxicol 10:1–8. https://doi.org/10.1007/s13273-014-0001-3

    Article  CAS  Google Scholar 

  6. Höbel S, Aigner A (2013) Polyethylenimines for siRNA and miRNA delivery in vivo. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology 5:484–501. https://doi.org/10.1002/wnan.1228

    Article  CAS  PubMed  Google Scholar 

  7. Terakawa M, Otsuka R, Sato S, Satoh Y, Takishima K, Ashida H, Okano H, Obara M (2007) Laser-induced stress wave-assisted gene transfection with cationic liposome. Jpn J Appl Phys Letter 46:L1243–L1245. https://doi.org/10.1143/JJAP.46.L1243

    Article  CAS  Google Scholar 

  8. Kurita A, Matsunobu T, Satoh Y, Ando T, Sato S, Obara M (2011) Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves. J Biomed Opt 16(9):098002. https://doi.org/10.1117/1.3628313

    Article  CAS  PubMed  Google Scholar 

  9. Ando T, Sato S, Ashida H, Obara M (2013) Effects of pressure characteristics on transfection efficiency in laser-induced stress wave-mediated gene delivery. Appl Phys A Mater Sci Process 112:129–134. https://doi.org/10.1007/s00339-012-7212-z

    Article  CAS  Google Scholar 

  10. Babincová M, Babinec P, Bergemann C (2001) High gradient magnetic capture of ferrofluid: implication for drug targeting and tumor embolization. Z Naturforsch C 56:909–911. https://doi.org/10.1515/znc-2001-9-1039

    Article  PubMed  Google Scholar 

  11. Babincová M, Altanerová V, Altaner C, Čičmanec P, Babinec P (2004) In vivo heating of magnetic nanoparticles in alternating magnetic field. Med Phys 31:2219–2224. https://doi.org/10.1118/1.1767101

    Article  PubMed  Google Scholar 

  12. Safarik I, Pospiskova K, Horska K, Safarikova M (2012) Potential of magnetically responsive (nano)biocomposites. Soft Matter 8:5407–5413. https://doi.org/10.1007/978-94-007-0443-5_13

    Article  CAS  Google Scholar 

  13. Durdík S, Krafčík A, Babincová M, Babinec P (2013) Conceptual design of integrated microfluidic system for magnetic cell separation, electroporation, and transfection. Phys Med 29:562–567. https://doi.org/10.1016/j.ejmp.2012.11.003

    Article  PubMed  Google Scholar 

  14. Babinec P, Krafcik A, Babincova M, Rosenecker J, Frollo I (2014) Application of pulsed magnetic ponderomotive force for intra-cellular gene delivery. Prog Electromagn Res M 37:139–147. https://doi.org/10.2528/PIERM14042907

    Article  Google Scholar 

  15. Krafčík A, Babinec P, Babincová M (2010) Feasibility of subcutaneously implanted magnetic microarrays for site specific drug and gene targeting. J Eng Sci Technol Rev 3:53–57 http://www.ingentaconnect.com/content/doaj/17912377/2010/00000003/00000001/art00010

    Article  Google Scholar 

  16. Altanerova U, Babincova M, Babinec P, Benejova K, Jakubechova J, Altanerova V, Zduriencikova M, Repiska V, Altaner C (2017) Human mesenchymal stem cell-derived iron oxide exosomes allow targeted ablation of tumor cells via magnetic hyperthermia. Int J Nanomedicine 12:7923–7936. https://doi.org/10.2147/IJN.S145096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mykhaylyk O, Zelphati O, Rosenecker J, Plank C (2008) siRNA delivery by magnetofection. Curr Opin Mol Ther 10:493–505

    CAS  PubMed  Google Scholar 

  18. Mykhaylyk O, Zelphati O, Hammerschmid E, Anton M, Rosenecker J, Plank C (2009) Recent advances in magnetofection and its potential to deliver siRNAs in vitro. Methods Mol Biol 487:111–146. https://doi.org/10.1007/978-1-60327-547-7_6

    Article  CAS  PubMed  Google Scholar 

  19. Mykhaylyk O, Sanchez-Antequera Y, Vlaskou D, Cerda MB, Bokharaei M, Hammerschmid E, Anton M, Plank C (2015) Magnetic nanoparticle and magnetic field assisted siRNA delivery in vitro. Methods Mol Biol 1218:53–106. https://doi.org/10.1007/978-1-4939-1538-5_5

    Article  CAS  PubMed  Google Scholar 

  20. Sauer AM, De Bruin KG, Ruthardt N, Mykhaylyk O, Plank C, Brauchle C (2009) Dynamics of magnetic lipoplexes studied by single particle tracking in living cells. J Control Release 137:136–145. https://doi.org/10.1016/j.jconrel.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Fouriki A, Dobson J (2014) Oscillating magnet array-based nanomagnetic gene transfection of human mesenchymal stem cells. Nanomedicine 9:989–997. https://doi.org/10.2217/nnm.13.74

    Article  CAS  PubMed  Google Scholar 

  22. Theil EC, Behera RK, Tosha T (2013) Ferritins for chemistry and for life. Coord Chem Rev 257:579–586. https://doi.org/10.1016/j.ccr.2012.05.01326

    Article  CAS  PubMed  Google Scholar 

  23. Li L, Muñoz-Culla M, Carmona U, Lopez MP, Yang F, Trigueros C, Knez M (2016) Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells. Biomaterials 98:143–151. https://doi.org/10.1016/j.biomaterials.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  24. Babincová M, Leszczynska D, Sourivong P, Babinec P (2000) Selective treatment of neoplastic cells using ferritin-mediated electromagnetic hyperthermia. Med Hypotheses 54:177–179. https://doi.org/10.1054/mehy.1999.0011

    Article  PubMed  Google Scholar 

  25. Babincová M, Babinec P (2005) Dopamine mediated iron release from ferritin is enhanced at higher temperatures: possible implications for fever-induced Parkinson’s disease. J Magn Magn Mater 293:341–344. https://doi.org/10.1016/j.jmmm.2005.02.029

    Article  CAS  Google Scholar 

  26. Lee EJ, Lee SJ, Kang Y, Ryu JH, Kwon KC, Jo E (2015) Engineered proteinticles for targeted delivery of siRNA to cancer cells. Adv Funct Mater 25:1279–1286. https://doi.org/10.1002/adfm.201403680

    Article  CAS  Google Scholar 

  27. Meldrum FC, Heywood BR, Mann S (1992) Magnetoferritin: in vitro synthesis of a novel magnetic protein. Science 257:522–523. https://doi.org/10.1126/science.1636086

    Article  CAS  PubMed  Google Scholar 

  28. Dickson DPE, Walton SA, Mann S, Wong K (1997) Properties of magnetoferritin: a novel biomagnetic nanoparticle. Nanostruct Mater 9:595–598. https://doi.org/10.1016/S0965-9773(97)00133-5

    Article  CAS  Google Scholar 

  29. Bulte JWM, Douglas T, Mann S, Frankel RB, Moskowitz BM, Brooks RA, Baumgarner CD, Vymazal J, Strub M, Frank JA (1994) Magnetoferritin: characterization of a novel superparamagnetic MR contrast agent. J Magn Reson 4:497–505. https://doi.org/10.1002/jmri.1880040343

    Article  CAS  Google Scholar 

  30. Kopcansky P, Siposova K, Melnikova L, Bednarikova Z, Timko M, Mitroova Z, Antosova A, Garamus VM, Petrenko VI, Avdeev MV, Gazova Z (2015) Destroying activity of magnetoferritin on lysozyme amyloid fibrils. J Magn Magn Mater 377:267–271. https://doi.org/10.1016/j.jmmm.2014.10.017

    Article  CAS  Google Scholar 

  31. Melnikova L, Pospiskova K, Mitroova Z, Kopcansky P, Safarik I (2014) Peroxidase-like activity of magnetoferritin. Microchim Acta 181:295–301. https://doi.org/10.1007/s00604-013-1105-5

    Article  CAS  Google Scholar 

  32. Durdík S, Babincová M, Bergemann C, Babinec P (2012) Nanosecond laser pulse induced stress waves enhanced: magnetofection of human carcinoma cells in vitro. Laser Phys Lett 9:678–681. https://doi.org/10.7452/lapl.201210064

    Article  CAS  Google Scholar 

  33. Babincová M, Babincová N, Durdík S, Bergemann C, Sourivong P (2016) Silencing by blasting: combination of laser pulse induced stress waves and magnetophoresis for siRNA delivery. Laser Phys Lett 13(6):065601. https://doi.org/10.1088/1612-2011/13/6/065601

    Article  CAS  Google Scholar 

  34. Carreira SC, Armstrong JPK, Okuda M, Seddon AM, Perriman AW, Schwarzacher W (2016) Synthesis of cationized magnetoferritin for ultra-fast magnetization of cells. J Vis Exp 118. http://www.jove.com/video/54785. https://doi.org/10.3791/54785

  35. Carreira SC, Spencer J, Schwarzacher W, Seddon AM (2016) Cationized magnetoferritin enables rapid labeling and concentration of gram-positive and gram-negative bacteria in magnetic cell separation columns. Appl Environ Microbiol 82:3599–3604. https://doi.org/10.1128/AEM.00720-16

    Article  CAS  Google Scholar 

  36. Carreira SC, Armstrong JPK, Seddon AM, Perriman AW, Hartley-Davies R, Schwarzacher W (2016) Ultra-fast stem cell labelling using cationised magnetoferritin. Nanoscale 8:7474–7483. https://doi.org/10.1039/C5NR07144E

    Article  CAS  Google Scholar 

  37. Babincová M, Vrbovská H, Sourivong P, Babinec P, Durdík Š (2018) Application of albumin-embedded magnetic nanoheaters for release of etoposide in integrated chemotherapy and hyperthermia of U87-MG glioma cells. Anticancer Res 38:2683–2690. https://doi.org/10.21873/anticanres.12510

    Article  PubMed  Google Scholar 

  38. Meng HA, Liong M, Xia TA, Li ZX, Ji ZX, Zink JI (2010) Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 4:4539–4550. https://doi.org/10.1021/nn100690m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baumgartner J, Šimaljaková M, Babál P (2016) Extensive angiokeratoma circumscriptum—successful treatment with 595-nm variable-pulse pulsed dye laser and 755-nm long-pulse pulsed alexandrite laser. J Cosmet Laser Ther 18:134–137. https://doi.org/10.3109/14764172.2015.1114643

    Article  PubMed  Google Scholar 

  40. Baumgartner J, Šimaljaková M (2017) Genital angiokeratomas of Fordyce 595-nm variable-pulse pulsed dye laser treatment. J Cosmet Laser Ther 19:459–464. https://doi.org/10.1080/14764172.2017.1343953

    Article  PubMed  Google Scholar 

  41. Mlacker S, Shah VV, Aldahan AS, McNamara CA, Kamath P, Nouri K (2016) Laser and light-based treatments of venous lakes: a literature review. Lasers Med Sci 31:1511–1519. https://doi.org/10.1007/s10103-016-1934-7

    Article  PubMed  Google Scholar 

  42. Cervantes J, Perper M, Eber AE, Fertig RM, Tsatalis JP, Nouri K (2018) Laser treatment of primary axillary hyperhidrosis: a review of the literature. Lasers Med Sci 33:675–681. https://doi.org/10.1007/s10103-017-2434-0

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant of Slovak grant agencies VEGA 1/0810/18 and APVV 16-0600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Babinec.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babincová, M., Durdík, Š., Babincová, N. et al. Application of cationized magnetoferritin for magnetic field-assisted delivery of short interfering RNA in vitro. Lasers Med Sci 33, 1807–1812 (2018). https://doi.org/10.1007/s10103-018-2547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2547-0

Keywords

Navigation