Skip to main content

Magnetic Nanoparticle and Magnetic Field Assisted siRNA Delivery In Vitro

  • Protocol
  • First Online:
RNA Interference

Abstract

This chapter describes how to design and conduct experiments to deliver siRNA to adherent cell cultures in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles (MNPs). These magnetic complexes are targeted to the cell surface by the application of a gradient magnetic field. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery. For this purpose, selected MNPs, phospholipids, and siRNAs are assembled in the presence of perfluorocarbon gas into flexible formulations of magnetic lipospheres (microbubbles). Methods are described how to accomplish the synthesis of magnetic nanoparticles for magnetofection and how to test the association of siRNA with the magnetic components of the transfection vector. A simple method is described to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Procedures are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA as well as magnetic microbubbles for magnetofection and downregulation of the target gene expression analysis with account for the toxicity determined using an MTT-based respiration activity test. A modification of the magnetic transfection triplexes with INF-7, fusogenic peptide, is described resulting in reporter gene silencing improvement in HeLa, Caco-2, and ARPE-19 cells. The methods described can also be useful for screening vector compositions and novel magnetic nanoparticle preparations for optimized siRNA transfection by magnetofection in any cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Plank C, Scherer F, Schillinger U, Anton M (2000) Magnetofection: enhancement and localization of gene delivery with magnetic particles under the influence of a magnetic field. J Gene Med 2(Suppl):24

    Google Scholar 

  2. Mah C, Zolotukhin I, Fraites TJ, Dobson J, Batich C, Byrne BJ (2000) Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol Ther 1:S239

    Article  Google Scholar 

  3. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gansbacher B, Plank C (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102–109

    Article  PubMed  CAS  Google Scholar 

  4. Pandori M, Hobson D, Sano T (2002) Adenovirus-microbead conjugates possess enhanced infectivity: a new strategy for localized gene delivery. Virology 299:204–212

    Article  PubMed  CAS  Google Scholar 

  5. Mah C, Fraites TJ Jr, Zolotukhin I, Song S, Flotte TR, Dobson J, Batich C, Byrne BJ (2002) Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol Ther 6:106–112

    Article  PubMed  CAS  Google Scholar 

  6. Hughes C, Galea-Lauri J, Farzaneh F, Darling D (2001) Streptavidin paramagnetic particles provide a choice of three affinity-based capture and magnetic concentration strategies for retroviral vectors. Mol Ther 3:623–630

    Article  PubMed  CAS  Google Scholar 

  7. Plank C, Anton M, Rudolph C, Rosenecker J, Krotz F (2003) Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opin Biol Ther 3:745–758

    Article  PubMed  CAS  Google Scholar 

  8. Plank C, Zelphati O, Mykhaylyk O (2011) Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv Drug Deliv Rev 63:1300–1331

    Article  PubMed  CAS  Google Scholar 

  9. Schillinger U, Brill T, Rudolph C, Huth S, Gersting S, Krotz F, Hirschberger J, Bergemann C, Plank C (2005) Advances in magnetofection - magnetically guided nucleic acid delivery. J Magn Magn Mater 293:501–508

    Article  CAS  Google Scholar 

  10. Huth S, Lausier J, Gersting SW, Rudolph C, Plank C, Welsch U, Rosenecker J (2004) Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J Gene Med 6:923–936

    Article  PubMed  CAS  Google Scholar 

  11. Krotz F, de Wit C, Sohn HY, Zahler S, Gloe T, Pohl U, Plank C (2003) Magnetofection–a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 7:700–710

    Article  PubMed  CAS  Google Scholar 

  12. Sauer AM, de Bruin KG, Ruthardt N, Mykhaylyk O, Plank C, Brauchle C (2009) Dynamics of magnetic lipoplexes studied by single particle tracking in living cells. J Control Release 137:136–145

    Article  PubMed  CAS  Google Scholar 

  13. Plank C, Schillinger U, Scherer F, Bergemann C, Remy JS, Krotz F, Anton M, Lausier J, Rosenecker J (2003) The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem 384:737–747

    Article  PubMed  CAS  Google Scholar 

  14. Dobson J (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 13:283–287

    Article  PubMed  CAS  Google Scholar 

  15. Doshida M, Ohmichi M, Tsutsumi S, Kawagoe J, Takahashi T, Du B, Mori-Abe A, Ohta T, Saitoh-Sekiguchi M, Takahashi K et al (2006) Raloxifene increases proliferation and up-regulates telomerase activity in human umbilical vein endothelial cells. J Biol Chem 281:24270–24278

    Article  PubMed  CAS  Google Scholar 

  16. Deleuze V, Chalhoub E, El-Hajj R, Dohet C, Le Clech M, Couraud PO, Huber P, Mathieu D (2007) TAL-1/SCL and its partners E47 and LMO2 up-regulate VE-cadherin expression in endothelial cells. Mol Cell Biol 27:2687–2697

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. McCaig C, Duval C, Hemers E, Steele I, Pritchard DM, Przemeck S, Dimaline R, Ahmed S, Bodger K, Kerrigan DD et al (2006) The role of matrix metalloproteinase-7 in redefining the gastric microenvironment in response to Helicobacter pylori. Gastroenterology 130:1754–1763

    Article  PubMed  CAS  Google Scholar 

  18. Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, Nakamura F, Takei K, Ihara Y, Mikoshiba K et al (2005) Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease. Genes Cells 10:165–179

    Article  PubMed  CAS  Google Scholar 

  19. Huang P, Senga T, Hamaguchi M (2007) A novel role of phospho-beta-catenin in microtubule regrowth at centrosome. Oncogene 26:4357–4371

    Article  PubMed  CAS  Google Scholar 

  20. Sapet C, Simoncini S, Loriod B, Puthier D, Sampol J, Nguyen C, Dignat-George F, Anfosso F (2006) Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2. Blood 108:1868–1876

    Article  PubMed  CAS  Google Scholar 

  21. Minami R, Yamamoto M, Takahama S, Miyamura T, Watanabe H, Suematsu E (2006) RCAS1 induced by HIV-Tat is involved in the apoptosis of HIV-1 infected and uninfected CD4+ T cells. Cell Immunol 243:41–47

    Article  PubMed  CAS  Google Scholar 

  22. Simoncini S, Njock MS, Robert S, Camoin-Jau L, Sampol J, Harle JR, Nguyen C, Dignat-George F, Anfosso F (2009) TRAIL/Apo2L mediates the release of procoagulant endothelial microparticles induced by thrombin in vitro: a potential mechanism linking inflammation and coagulation. Circ Res 104:943–951

    Article  PubMed  CAS  Google Scholar 

  23. Meda C, Plank C, Mykhaylyk O, Schmidt K, Mayer B (2010) Effects of statins on nitric oxide/cGMP signaling in human umbilical vein endothelial cells. Pharmacol Rep 62:100–112

    Article  PubMed  CAS  Google Scholar 

  24. Melki MT, Saidi H, Dufour A, Olivo-Marin JC, Gougeon ML (2010) Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk–a pivotal role of HMGB1. PLoS Pathog 6:e1000862

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tajika Y, Takahashi M, Hino M, Murakami T, Yorifuji H (2010) VAMP2 marks quiescent satellite cells and myotubes, but not activated myoblasts. Acta Histochem Cytochem 43:107–114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Namiki Y, Namiki T, Yoshida H, Ishii Y, Tsubota A, Koido S, Nariai K, Mitsunaga M, Yanagisawa S, Kashiwagi H et al (2009) A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat Nanotechnol 4:598–606

    Article  PubMed  CAS  Google Scholar 

  27. Zhang H, Lee MY, Hogg MG, Dordick JS, Sharfstein ST (2010) Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles. ACS Nano 4:4733–4743

    Article  PubMed  CAS  Google Scholar 

  28. Bonetta L (2005) The inside scoop - evaluating gene delivery methods. Nat Methods 2:875–883

    Article  CAS  Google Scholar 

  29. Smith C (2006) Sharpening the tools of RNA interference. Nat Methods 3:475–486

    Article  CAS  Google Scholar 

  30. Booth BA, Vidal Denham L, Bouhanik S, Jacob JT, Hill JM (2007) Sustained-release ophthalmic drug delivery systems for treatment of macular disorders: present and future applications. Drugs Aging 24:581–602

    Article  PubMed  CAS  Google Scholar 

  31. Lee SS, Michael R (2009) Novel drug delivery systems for retinal diseases. Ophthalmic Res 41:124–135

    Article  PubMed  CAS  Google Scholar 

  32. Vlaskou D, Mykhaylyk O, Krötz F, Hellwig N, Renner R, Schillinger U, Gleich B, Heidsieck A, Schmitz G, Hensel K et al (2010) Magnetic and acoustically active lipospheres for magnetically targeted nucleic acid delivery. Adv Funct Mater 20:3881–3894

    Google Scholar 

  33. Lee SS, Robinson MR (2009) Novel drug delivery systems for retinal diseases. A review. Ophthalmic Res 41:124–135

    Article  PubMed  CAS  Google Scholar 

  34. Myles ME, Neumann DM, Hill JM (2005) Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev 57:2063–2079

    Article  PubMed  CAS  Google Scholar 

  35. Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y (2004) Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 23:253–281

    Article  PubMed  CAS  Google Scholar 

  36. Pavan PR, Burrows A, Pavan-LAngston D (2008) Retina and vitreous, 2008th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  37. Jager RD, Aiello LP, Patel SC, Cunningham ET Jr (2004) Risks of intravitreous injection: a comprehensive review. Retina 24:676–698

    Article  PubMed  Google Scholar 

  38. Liu MM, Tuo J, Chan CC (2011) Gene therapy for ocular diseases. Br J Ophthalmol 95:604–612

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gaudana R, Jwala J, Boddu SH, Mitra AK (2009) Recent perspectives in ocular drug delivery. Pharm Res 26:1197–1216

    Article  PubMed  CAS  Google Scholar 

  40. Bloquel C, Bourges JL, Touchard E, Berdugo M, BenEzra D, Behar-Cohen F (2006) Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliv Rev 58:1224–1242

    Article  PubMed  CAS  Google Scholar 

  41. Fechheimer M, Boylan JF, Parker S, Sisken JE, Patel GL, Zimmer SG (1987) Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci U S A 84:8463–8467

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Kim HJ, Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME (1996) Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther 7:1339–1346

    Article  PubMed  CAS  Google Scholar 

  43. Bao SP, Thrall BD, Miller DL (1997) Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 23:953–959

    Article  PubMed  CAS  Google Scholar 

  44. Newman CM, Lawrie A, Brisken AF, Cumberland DC (2001) Ultrasound gene therapy: on the road from concept to reality. Echocardiography 18:339–347

    Article  PubMed  CAS  Google Scholar 

  45. Tata DB, Dunn F, Tindall DJ (1997) Selective clinical ultrasound signals mediate differential gene transfer and expression in two human prostate cancer cell lines: LnCap and PC-3. Biochem Biophys Res Commun 234:64–67

    Article  PubMed  CAS  Google Scholar 

  46. Lawrie A, Brisken AF, Francis SE, Tayler DI, Chamberlain J, Crossman DC, Cumberland DC, Newman CM (1999) Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation 99:2617–2620

    Article  PubMed  CAS  Google Scholar 

  47. Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60:1153–1166

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Vlaskou D, Pradhan P, Bergemann C, Klibanov AL, Hensel K, Schmitz G, Plank C, Mykhaylyk O (2010) Magnetic microbubbles: magnetically targeted and ultrasound-triggered vectors for gene delivery in vitro. AIP Conf Proc 1311:485–494

    Article  CAS  Google Scholar 

  49. Plank C, Scherer F, Rudolph C (2005). Localized nucleic acid delivery: A discussion of selected methods. In Schleef M (ed), DNA pharmaceuticals. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p. 55–116

    Google Scholar 

  50. Hellwig N, Plank C, Vlaskou D, Bridell H, Sohn HY, Pohl U, Krotz F (2005) Ultrasound-enhanced microbubble-magnetofection: a new approach for targeted delivery of nucleotides in vivo. J Vasc Res 42:86–87

    Google Scholar 

  51. Vlaskou D, Mykhaylyk O, Giunta R, Neshkova I, Hellwig N, Kroetz F, Bergemann C, Plank C (2006) Magnetic microbubbles: new carriers for localized gene and drug delivery. Mol Ther 13:S290

    Article  Google Scholar 

  52. del Pino P, Munoz-Javier A, Vlaskou D, Rivera Gil P, Plank C, Parak WJ (2010) Gene silencing mediated by magnetic lipospheres tagged with small interfering RNA. Nano Lett 10:3914–3921

    Article  PubMed  Google Scholar 

  53. Holzbach T, Vlaskou D, Neshkova I, Konerding MA, Wortler K, Mykhaylyk O, Gansbacher B, Machens HG, Plank C, Giunta RE (2010) Non-viral VEGF(165) gene therapy - magnetofection of acoustically active magnetic lipospheres ('magnetobubbles') increases tissue survival in an oversized skin flap model. J Cell Mol Med 14:587–599

    PubMed  CAS  Google Scholar 

  54. Unger EC, McCreery TP, Sweitzer RH, Caldwell VE, Wu Y (1998) Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest Radiol 33:886–892

    Article  PubMed  CAS  Google Scholar 

  55. Stride E, Porter C, Prieto AG, Pankhurst Q (2009) Enhancement of microbubble mediated gene delivery by simultaneous exposure to ultrasonic and magnetic fields. Ultrasound Med Biol 35:861–868

    Article  PubMed  Google Scholar 

  56. Lentacker I, De Smedt S, Demeester J, Van Marck V, Bracke M, Sanders N (2007) Lipoplex-loaded microbubbles for gene delivery: a trojan horse controlled by ultrasound. Hum Gene Ther 18:1046–1046

    Google Scholar 

  57. Felgner PL, Barenholz Y, Behr JP, Cheng SH, Cullis P, Huang L, Jessee JA, Seymour L, Szoka F, Thierry AR et al (1997) Nomenclature for synthetic gene delivery systems. Hum Gene Ther 8:511–512

    Article  PubMed  CAS  Google Scholar 

  58. Mykhaylyk O, Vlaskou D, Tresilwised N, Pithayanukul P, Moller W, Plank C (2007) Magnetic nanoparticle formulations for DNA and siRNA delivery. J Magn Magn Mater 311:275–281

    Article  CAS  Google Scholar 

  59. Mykhaylyk O, Sobisch T, Almstatter I, Sanchez-Antequera Y, Brandt S, Anton M, Doblinger M, Eberbeck D, Settles M, Braren R et al (2012) Silica-iron oxide magnetic nanoparticles modified for gene delivery: a search for optimum and quantitative criteria. Pharm Res 29:1344–1365

    Article  PubMed  CAS  Google Scholar 

  60. Terebesi J, Kwok KY, Rice KG (1998) Iodinated plasmid DNA as a tool for studying gene delivery. Anal Biochem 263:120–123

    Article  PubMed  CAS  Google Scholar 

  61. Azzam T, Domb AJ (2004) Current developments in gene transfection agents. Curr Drug Deliv 1:165–193

    Article  PubMed  CAS  Google Scholar 

  62. Landschulz W, Thesleff I, Ekblom P (1984) A lipophilic iron chelator can replace transferrin as a stimulator of cell-proliferation and differentiation. J Cell Biol 98:596–601

    Article  PubMed  CAS  Google Scholar 

  63. Kovar J (1990) Insoluble iron compound is able to stimulate growth of cultured-cells. In Vitro Cell Dev Biol 26:1026–1027

    Article  PubMed  CAS  Google Scholar 

  64. Savonniere S, Zeghari N, Miccoli L, Muller S, Maugras M, Donner M (1996) Effects of lipid supplementation of culture media on cell growth, antibody production, membrane structure and dynamics in two hybridomas. J Biotechnol 48:161–173

    Article  PubMed  CAS  Google Scholar 

  65. Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E (1994) The influence of endosome-disruptive peptides on gene-transfer using synthetic virus-like gene-transfer systems. J Biol Chem 269:12918–12924

    PubMed  CAS  Google Scholar 

  66. Plank C, Zauner W, Wagner E (1998) Application of membrane-active peptides for drug and gene delivery across cellular membranes. Adv Drug Deliv Rev 34:21–35

    Article  PubMed  CAS  Google Scholar 

  67. Funhoff AM, van Nostrum CF, Lok MC, Fretz MM, Crommelin DJ, Hennink WE (2004) Poly(3-guanidinopropyl methacrylate): a novel cationic polymer for gene delivery. Bioconjug Chem 15:1212–1220

    Article  PubMed  CAS  Google Scholar 

  68. Jiang X, Lok MC, Hennink WE (2007) Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery. Bioconjug Chem 18:2077–2084

    Article  PubMed  CAS  Google Scholar 

  69. Oliveira S, van Rooy I, Kranenburg O, Storm G, Schiffelers RM (2007) Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int J Pharm 331:211–214

    Article  PubMed  CAS  Google Scholar 

  70. Kowalskia JB, Tallentireb A (1999) Substantiation of 25 kGy as a sterilization dose: a rational approach to establishing verification dose. Radiat Phys Chem 54:55–64

    Article  Google Scholar 

  71. von Gersdorff K (2006) PEG-shielded and egf receptor-targeted dna polyplexes: cellular mechanisms. Doctor Thesis. München 1–125

    Google Scholar 

  72. Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152

    Article  PubMed  CAS  Google Scholar 

  73. Berridge MV, Tan AS, Hilton CJ (1993) Cyclic adenosine monophosphate promotes cell survival and retards apoptosis in a factor-dependent bone marrow-derived cell line. Exp Hematol 21:269–276

    PubMed  CAS  Google Scholar 

  74. Mykhaylyk O, Zelphati O, Rosenecker J, Plank C (2008) siRNA delivery by magnetofection. Curr Opin Mol Ther 10:493–505

    PubMed  CAS  Google Scholar 

  75. Wilhelm C, Gazeau F, Bacri JC (2002) Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J 31:118–125

    Article  PubMed  CAS  Google Scholar 

  76. Mykhaylyk O, Zelphati O, Hammerschmid E, Anton M, Rosenecker J, Plank C (2009) Recent advances in magnetofection and its potential to deliver siRNAs in vitro. Methods Mol Biol 487:111–146

    PubMed  CAS  Google Scholar 

  77. Suzuki M, Mikami T, Matsumoto T, Suzuki S (1977) Preparation and antitumor activity of o-palmitoyldextran phosphates, o-palmitoyldextrans, and dextran phosphate. Carbohydr Res 53:223–229

    Article  PubMed  CAS  Google Scholar 

  78. Snyder F, Stephens N (1959) A simplified spectrophotometric determination of ester groups in lipids. Biochim Biophys Acta 34:244–245

    Article  PubMed  CAS  Google Scholar 

  79. Esbjorner EK, Oglecka K, Lincoln P, Graslund A, Norden B (2007) Membrane binding of pH-sensitive influenza fusion peptides. positioning, configuration, and induced leakage in a lipid vesicle model. Biochemistry 46:13490–13504

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support from the German Research Foundation through the DFG Research Unit FOR917 (Project PL 281/3-1), from the German Federal Ministry of Education and Research through grants ZIM-KOOP “STEP-MAG,” Nanobiotechnology grants 13N8186 and 13N8538, and from the Excellence Cluster “Nanosystems Initiative Munich.” The authors would like to thank Dr. Bob Scholte for transduction of the H441 cells with eGFP and luciferase using lentiviral vectors and Dr. Christian Bergemann (chemicell GmbH, Berlin) for providing MNPs for the preparation of the MAALs. This work was supported by the European Union through the FP6-LIFESCIHEALTH Project “Improved precision of nucleic acid based therapy of cystic fibrosis” under contract no. 005213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Mykhaylyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mykhaylyk, O. et al. (2015). Magnetic Nanoparticle and Magnetic Field Assisted siRNA Delivery In Vitro. In: Sioud, M. (eds) RNA Interference. Methods in Molecular Biology, vol 1218. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1538-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1538-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1537-8

  • Online ISBN: 978-1-4939-1538-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics