Skip to main content

Advertisement

Log in

Histomorphologic and ultrastructural recovery of myopathy in rats treated with low-level laser therapy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The purpose of the present work was to study the effect of low-level laser therapy (LLLT): helium-neon (He-Ne) and gallium arsenide (Ga-As) laser on the histomorphology of muscle and mitochondria in experimental myopathy in rats. Thirty Suquía strain female rats were distributed in groups: (A) control (intact), (B) injured, (C) injured and treated with He-Ne laser, (D) injured and treated with Ga-As laser, (E) irradiated with He-Ne laser on the non-injured muscle, and (F) irradiated with Ga-As laser on the non-injured muscle. Myopathy was induced by injecting 0.05 mg/rat/day of adrenaline in the left gastrocnemius muscle at the same point on five consecutive days, in groups B, C, and D. LLLT was applied with 9.5 J cm−2 daily for seven consecutive days in groups C, D, E, and F. The muscles were examined with optic and electronic microscopy. The inflammation was classified as absent, mild, and intense and the degree of mitochondrial alteration was graded I, II, III, and IV. Categorical data were statistically analyzed by Chi-square and the Fisher-Irwin Bilateral test, setting significant difference at p < 0.05. The damage found in muscle and mitochondria histomorphology in animals with induced myopathy (B) was intense or severe inflammation with grade III or IV of mitochondrial alteration. They underwent significant regression (p < 0.001) compared with the groups treated with He-Ne (C) and Ga-As (D) laser, in which mild or moderate inflammation was seen and mitochondrial alteration grades I and II, recovering normal myofibrillar architecture. No differences were found between the effects caused by the two lasers, or between groups A, E, and F. Group A was found to be different from B, C, and D (p < 0.001). LLLT in experimental myopathy caused significant muscular and mitochondrial morphologic recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kumar V, Abbas AK, Fausto N, Aster JC (2010) Enfermedades del sistema inmunitario. In: Robbins C (ed) Patología estructural y funcional, 8vath edn. Elsevier Saunders, España, pp 183–257

    Google Scholar 

  2. Ciciliot S, Schiaffino S (2010) Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des 16:906–914

    Article  CAS  PubMed  Google Scholar 

  3. Salomonsson S, Lundberg I (2006) Cytokines in idiopathic inflammatory myopathies. Autoimmunity 39:177–190

    Article  CAS  PubMed  Google Scholar 

  4. Astrin J (2008) Understanding the idiopathic inflammatory myopathies. JAAPA 21:42–47

    PubMed  Google Scholar 

  5. Stadhouders AM, Sengers RC (1987) Morphological observations in skeletal muscle from patients with a mitochondrial myopathy. J Inherit Metab Dis 10:62–80

    Article  PubMed  Google Scholar 

  6. Rygiel KA, Miller J, Grady JP, Rocha MC, Taylor RW, Turnbull DM (2014) Mitochondrial and inflammatory changes in sporadic inclusion body myositis. Neuropathol Appl Neurobiol 41:288–303

    Article  Google Scholar 

  7. Loell I, Lundberg IE (2011) Can muscle regeneration fail in chronic inflammation: a weakness in inflammatory myopathies? J Intern Med 269:243–257

    Article  CAS  PubMed  Google Scholar 

  8. Distad BJ, Amato AA, Weiss MD (2011) inflammatory myopathies. Curr Treat Options Neurol 13:119–130

    Article  PubMed  Google Scholar 

  9. Kandulski A, Venerito M, Malfertheiner P (2009) Non-steroidal anti-inflammatory drugs (NSAIDs)—balancing gastrointestinal complications and the cardiovascular risk. Dtsch Med Wochenschr 134:1635–1640

    Article  CAS  PubMed  Google Scholar 

  10. Ziltener JL, Leal S, Fournier PE (2010) Non-steroidal anti-inflammatory drugs for athletes: an update. Ann Phys Rehabil Med 53:278–288

    Article  PubMed  Google Scholar 

  11. Choy DS (2014) History of lasers in medicine. Photomed Laser Surg 32:119–120

    Article  PubMed  Google Scholar 

  12. Anders JJ, Lanzafame RJ, Arany PR (2015) Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 33:183–184

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gigo-Benato D, Russo TL, Tanaka EH, Assis L, Salvini TF, Parizotto NA (2010) Effects of 660 and 780 nm low-level laser therapy on neuromuscular recovery after crush injury in rat sciatic nerve. Lasers Surg Med 42:673–682

    Article  PubMed  Google Scholar 

  14. Rubio CR, Cremonezzi D, Moya M, Soriano F, Palma J, Campana V (2010) Helium-neon laser reduces the inflammatory process of arthritis. Photomed Laser Surg 28:125–129

    Article  PubMed  Google Scholar 

  15. Servetto N, Cremonezzi D, Simes JC, Soriano F, Palma JA, Campana VR (2010) Evaluation of inflammatory biomarkers associated with oxidative stress and histological assessment of low level laser therapy in experimental myopathy. Lasers Surg Med 42:577–583

    Article  PubMed  Google Scholar 

  16. Iyomasa DM, Garavelo I, Iyomasa MM, Watanabe IS, Issa JP (2009) Ultraestructural analysis of the low level laser therapy effects on the lesioned anterior tibial muscle in the gerbil. Micron 40:413–418

    Article  CAS  PubMed  Google Scholar 

  17. Dávila S, Vignola MB, Cremonezzi D, Simes JC, Soriano F, Campana VR (2011) Low level laser therapy on experimental myopathy. Laser Ther 20:287–292

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carroll JD, Milward MR, Cooper PR, Hadis M, Palin WM (2014) Developments in low level light therapy (LLLT) for dentistry. Dent Mater 30:465–475

    Article  PubMed  Google Scholar 

  19. Albuquerque-Pontes GM, Vieira RP, Tomazoni SS, Caires CO, Nemeth V, Vanin AA, Santos LA, Pinto HD, Marcos RL, Bjordal JM, de Carvalho PT, Leal-Junior EC (2015) Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci 30:59–66

    Article  PubMed  Google Scholar 

  20. Baez MC, Táran MD, Campana V, Simes JC, Pons P, Palma JA, Moya M (2009) Marcadores de estrés oxidativo en aterogénesis inducida por hiperfibrinogenemia. Arch Cardiol Mex 79:85–90

    CAS  PubMed  Google Scholar 

  21. Karnovsky MJ (1965) A formaldehyde–glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137A–138A

    Google Scholar 

  22. Massa EM, Aoki A (1971) Simple method for purification of glutaraldehyde. Acta Physiol Lat Am 21:161–163

    CAS  PubMed  Google Scholar 

  23. Báez AL, Lo Presti MS, Fretes R, Díaz C, Pons P, Bazán PC, Strauss M, Rivarola HW, Paglini-Oliva P (2013) Chronic indeterminate phase of Chagas’ disease: mitochondrial involvement in infection with two strains. Parasitology 140:414–421

    Article  PubMed  Google Scholar 

  24. Osadchii OE, Norton GR, McKechnie R, Deftereos D, Woodiwiss AJ (2007) Cardiac dilatation and pump dysfunction without intrinsic myocardial systolic failure following chronic beta adrenoreceptor activation. Am J Physiol Heart Circ Physiol 292:H1898–H1905

    Article  CAS  PubMed  Google Scholar 

  25. Parra Lara R, Matamala Vargas F, Silva Mella H (2007) Morphological effect of As.Ga laser irradiation on rat skeletal muscle. Int J Morphol 25:43–50

    Article  Google Scholar 

  26. Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy—an update. Dose Response 9:602–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baptista J, Martins MD, Pavesi VC, Bussadori SK, Fernandes KP, Pinto Júnior Ddos S, Ferrari RA (2011) Influence of laser photobiomodulation on collagen IV during skeletal muscle tissue remodeling after injury in rats. Photomed Laser Surg 29:11–17

    Article  CAS  PubMed  Google Scholar 

  28. Karu TI (2003) Low power laser therapy. In: Vo-Dinh T (ed) Biomedical photonics hand-book Ch 48. CRC Press, Boca Raton, pp 1–25

    Google Scholar 

  29. Zhang CP, Hao TL, Chen P, Liang J, Wang CZ, Kang HX, Gao RL, Fu SB (2011) Effect of low level laser irradiation on the proliferation of myoblasts—the skeletal muscle precursor cells: an experimental in vitro study. Laser Phys 21:2122–2127

    Article  CAS  Google Scholar 

  30. Boveris DL, Boveris A (2007) Oxygen delivery to the tissues and mitochondrial respiration. Front Biosci 12:1014–1023

    Article  CAS  PubMed  Google Scholar 

  31. Ghafourifar P, Cadenas E (2005) Mitochondrial nitric oxide synthase. Trends Pharmacol Sci 26:190–195

    Article  CAS  PubMed  Google Scholar 

  32. Desmet KD, Paz DA, Corry JJ, Eells JT, Wong-Riley MT, Henry MM, Buchmann EV, Connelly MP, Dovi JV, Liang HL, Henshel DS, Yeager RL, Millsap DS, Lim J, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2006) Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg 24:121–128

    Article  CAS  PubMed  Google Scholar 

  33. Rezende SB, Ribeiro MS, Núñez SC, Garcia VG, Maldonado EP (2007) Effects of a single near-infrared laser treatment on cutaneous wound healing: biometrical and histological study in rats. J Photochem Photobiol B 87:145–153

    Article  CAS  PubMed  Google Scholar 

  34. Shefer G, Partridge T, Heslop L, Gross JG, Oron U, Halevy O (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115:1461–1469

    CAS  PubMed  Google Scholar 

  35. Nakano J, Kataoka H, Sakamoto J, Origuchi T, Okita M, Yoshimura T (2009) Low-level laser irradiation promotes the recovery of atrophied gastrocnemius skeletal muscle in rats. Exp Physiol 94:1005–1015

    Article  CAS  PubMed  Google Scholar 

  36. Emelyanov AN, Kiryanova VV (2015) Photomodulation of proliferation and differentiation of stem cells by the visible and infrared light. Photomed Laser Surg 33:164–174

    Article  PubMed  Google Scholar 

  37. Lindgard A, Hultén LM, Svensson L, Soussi B (2007) Irradiation at 634 nm releases nitric oxide from human monocytes. Lasers Med Sci 22:30–36

    Article  PubMed  Google Scholar 

  38. Karu TI, Pyatibrat LV, Afanasyeva NI (2005) Cellular effects of low power therapy can be mediated by nitric oxide. Lasers Surg Med 36:307–314

    Article  PubMed  Google Scholar 

  39. Abdel S, Abdel-Meguid I, Korraa SE (2007) Markers of oxidative stress and aging in Duchene muscular dystrophy patients and the possible ameliorating affect of He:Ne laser. Acta Myol 26:14–21

    PubMed  Google Scholar 

  40. Leal-Junior EC, de Almeida P, Tomazoni SS, de Carvalho PT, Lopes-Martins RÁ, Frigo L, Joensen J, Johnson MI, Bjordal JM (2014) Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression. PLoS One 5:e89453

    Article  Google Scholar 

  41. de Almeida P, Tomazoni SS, Frigo L, de Carvalho PT, Vanin AA, Santos LA, Albuquerque-Pontes GM, De Marchi T, Tairova O, Marcos RL, Lopes-Martins RÁ, Leal-Junior EC (2014) What is the best treatment to decrease pro-inflammatory cytokine release in acute skeletal muscle injury induced by trauma in rats: low-level laser therapy, diclofenac, or cryotherapy? Lasers Med Sci 29:653–658

    Article  PubMed  Google Scholar 

  42. Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F (2010) In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol 86:673–680

    Article  CAS  PubMed  Google Scholar 

  43. Santos LA, Marcos RL, Tomazoni SS, Vanin AA, Antonialli FC, Grandinetti Vdos S, Albuquerque-Pontes GM, de Paiva PR, Lopes-Martins RÁ, de Carvalho PT, Bjordal JM, Leal-Junior EC (2014) Effects of pre-irradiation of low-level laser therapy with different doses and wavelengths in skeletal muscle performance, fatigue, and skeletal muscle damage induced by tetanic contractions in rats. Lasers Med Sci 29:1617–1626

    Article  PubMed  Google Scholar 

  44. de Almeida P, Lopes-Martins RÁ, Tomazoni SS, Albuquerque-Pontes GM, Santos LA, Vanin AA, Frigo L, Vieira RP, Albertini R, de Carvalho PT, Leal-Junior EC (2013) Low-level laser therapy and sodium diclofenac in acute inflammatory response induced by skeletal muscle trauma: effects in muscle morphology and mRNA gene expression of inflammatory markers. Photochem Photobiol 89:501–507

    Article  PubMed  Google Scholar 

  45. de Almeida P, Lopes-Martins RÁ, Tomazoni SS, Silva JA Jr, de Carvalho PT, Bjordal JM, Leal Junior EC (2011) Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol 87:1159–1163

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The present work was funded by the Secretaría de Ciencia y Tecnología: Universidad Nacional de La Rioja and Universidad Nacional de Córdoba and Ministerio de Ciencia y Tecnología de la Provincia de Córdoba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilma R. Campana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Role of funding source

The funding grants were used for the acquisition of laboratory materials. Universidad Nacional de Córdoba supported the facilities and equipment used to carry out the present work.

Ethical approval

Experiments were conducted following the guidelines of our institutional IACUC (FCM-UNC), Protocol N° 27/15, which are in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Informed consent

Not necessary for laboratory animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Servetto, N., Cremonezzi, D., Simes, J.C. et al. Histomorphologic and ultrastructural recovery of myopathy in rats treated with low-level laser therapy. Lasers Med Sci 32, 841–849 (2017). https://doi.org/10.1007/s10103-017-2182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2182-1

Keywords

Navigation