Skip to main content
Log in

What is the best treatment to decrease pro-inflammatory cytokine release in acute skeletal muscle injury induced by trauma in rats: low-level laser therapy, diclofenac, or cryotherapy?

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Currently, treatment of muscle injuries represents a challenge in clinical practice. In acute phase, the most employed therapies are cryotherapy and nonsteroidal anti-inflammatory drugs. In the last years, low-level laser therapy (LLLT) has becoming a promising therapeutic agent; however, its effects are not fully known. The aim of this study was to analyze the effects of sodium diclofenac (topical application), cryotherapy, and LLLT on pro-inflammatory cytokine levels after a controlled model of muscle injury. For such, we performed a single trauma in tibialis anterior muscle of rats. After 1 h, animals were treated with sodium diclofenac (11.6 mg/g of solution), cryotherapy (20 min), or LLLT (904 nm; superpulsed; 700 Hz; 60 mW mean output power; 1.67 W/cm2; 1, 3, 6 or 9 J; 17, 50, 100 or 150 s). Assessment of interleukin-1β and interleukin-6 (IL-1β and IL-6) and tumor necrosis factor-alpha (TNF-α) levels was performed at 6 h after trauma employing enzyme-linked immunosorbent assay method. LLLT with 1 J dose significantly decreased (p < 0.05) IL-1β, IL-6, and TNF-α levels compared to non-treated injured group as well as diclofenac and cryotherapy groups. On the other hand, treatment with diclofenac and cryotherapy does not decrease pro-inflammatory cytokine levels compared to the non-treated injured group. Therefore, we can conclude that 904 nm LLLT with 1 J dose has better effects than topical application of diclofenac or cryotherapy in acute inflammatory phase after muscle trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li Y, Cummins J, Huard J (2001) Muscle injury and repair. Curr Opin Orthop 12:409–415

    Article  Google Scholar 

  2. Järvinen TA, Järvinen TL, Kääriäinen M, Aärimaa V, Vaittinen S, Kalimo H, Järvinen M (2007) Muscle injuries: optimizing recovery. Best Pract Res Clin Rheumatol 21:317–331

    Article  PubMed  Google Scholar 

  3. Sato K, Li Y, Foster W, Fukushima K, Badlani N, Adachi N, Usas A, Fu FH, Huard J (2003) Improvement of muscle healing through enhancement of muscle regeneration and prevention of fibrosis. Muscle Nerve 28:365–372

    Article  CAS  PubMed  Google Scholar 

  4. Beaton LJ, Tarnopolsky MA, Phillips SM (2002) Contraction-induced muscle damage in humans following calcium channel blocker administration. J Physiol 544:849–859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nguyen HX, Tidball JG (2003) Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro. J Physiol 547:125–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hamada K, Vannier E, Sacheck JM, Witsell AL, Roubenoff R (2005) Senescence of human skeletal muscle impairs the local inflammatory cytokine response to acute eccentric exercise. FASEB J 19:246–266

    Google Scholar 

  7. Hegedus B, Viharos L, Gervain M, Gálfi M (2009) The effect of low-level laser in knee osteoarthritis: a double-blind, randomized, placebo-controlled trial. Photomed Laser Surg 27:577–584

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bjordal JM, Lopes-Martins RA, Iversen VV (2006) A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. Br J Sports Med 40:76–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Stergioulas A, Stergioula M, Aarskog R, Lopes-Martins RA, Bjordal JM (2008) Effects of low-level laser therapy and eccentric exercises in the treatment of recreational athletes with chronic achilles tendinopathy. Am J Sports Med 36:881–887

    Article  PubMed  Google Scholar 

  10. Gur A, Sarac AJ, Cevik R, Altindag O, Sarac S (2004) Efficacy of 904 nm gallium arsenide low level laser therapy in the management of chronic myofascial pain in the neck: a double-blind and randomize-controlled trial. Lasers Surg Med 35:229–235

    Article  PubMed  Google Scholar 

  11. Chow RT, Heller GZ, Barnsley L (2006) The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain 124:201–210

    Article  PubMed  Google Scholar 

  12. Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374:1897–1908

    Article  PubMed  Google Scholar 

  13. Basford JR, Sheffield CG, Harmsen WS (1999) Laser therapy: a randomized, controlled trial of the effects of low-intensity Nd:YAG laser irradiation on musculoskeletal back pain. Arch Phys Med Rehabil 80:647–652

    Article  CAS  PubMed  Google Scholar 

  14. Leal Junior EC, Lopes-Martins RA, Dalan F, Ferrari M, Sbabo FM, Generosi RA, Baroni BM, Penna SC, Iversen VV, Bjordal JM (2008) Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26:419–424

    Article  PubMed  Google Scholar 

  15. Leal Junior EC, Lopes-Martins RA, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Iversen VV, Bjordal JM (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24:425–431

    Article  PubMed  Google Scholar 

  16. Leal Junior EC, Lopes-Martins RA, Rossi RP, De Marchi T, Baroni BM, de Godoi V, Marcos RL, Ramos L, Bjordal JM (2009) Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med 41:572–577

    Article  PubMed  Google Scholar 

  17. Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, Silva DP, Basso M, Filho PL, de Valls CF, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40:524–532

    Article  PubMed  Google Scholar 

  18. de Almeida P, Lopes-Martins RÁ, Tomazoni SS, Silva JA Jr, de Carvalho PT, Bjordal JM, Leal Junior EC (2011) Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol 87:1159–1163

    Article  PubMed  Google Scholar 

  19. Leal Junior EC, de Godoi V, Mancalossi JL, Rossi RP, De Marchi T, Parente M, Grosselli D, Generosi RA, Basso M, Frigo L, Tomazoni SS, Bjordal JM, Lopes-Martins RA (2011) Comparison between cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) in short-term skeletal muscle recovery after high-intensity exercise in athletes—preliminary results. Lasers Med Sci 26:493–501

    Article  PubMed Central  PubMed  Google Scholar 

  20. de Almeida P, Lopes-Martins RA, De Marchi T, Tomazoni SS, Albertini R, Corrêa JC, Rossi RP, Machado GP, da Silva DP, Bjordal JM, Leal Junior EC (2012) Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers Med Sci 27:453–458

    Article  PubMed Central  PubMed  Google Scholar 

  21. De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27:231–236

    Article  PubMed  Google Scholar 

  22. Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R (2009) Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B 95:89–92

    Article  CAS  PubMed  Google Scholar 

  23. Ramos L, Leal Junior EC, Pallotta RC, Frigo L, Marcos RL, de Carvalho MH, Bjordal JM, Lopes-Martins RÁ (2012) Infrared (810 nm) low-level laser therapy in experimental model of strain-induced skeletal muscle injury in rats: effects on functional outcomes. Photochem Photobiol 88:154–160

    Article  CAS  PubMed  Google Scholar 

  24. de Almeida P, Lopes-Martins RÁ, Tomazoni SS, Albuquerque-Pontes GM, Santos LA, Vanin AA, Frigo L, Vieira RP, Albertini R, de Carvalho PT, Leal-Junior EC (2013) Low-level laser therapy and sodium diclofenac in acute inflammatory response induced by skeletal muscle trauma: effects in muscle morphology and mRNA gene expression of inflammatory markers. Photochem Photobiol 89:501–507

    Article  PubMed  Google Scholar 

  25. de Paiva Carvalho RL, Leal-Junior EC, Petrellis MC, Marcos RL, de Carvalho MH, De Nucci G, Lopes-Martins RA (2013) Effects of low-level laser therapy (LLLT) and diclofenac (topical and intramuscular) as single and combined therapy in experimental model of controlled muscle strain in rats. Photochem Photobiol 89:508–512

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Professors Ernesto Cesar Pinto Leal-Junior and Lucio Frigo would like to thank FAPESP grant numbers 2010/52404-0 and 2012/06832-5, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Cesar Pinto Leal-Junior.

Additional information

Patrícia de Almeida and Shaiane Silva Tomazoni have equal participation in study development.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Almeida, P., Tomazoni, S.S., Frigo, L. et al. What is the best treatment to decrease pro-inflammatory cytokine release in acute skeletal muscle injury induced by trauma in rats: low-level laser therapy, diclofenac, or cryotherapy?. Lasers Med Sci 29, 653–658 (2014). https://doi.org/10.1007/s10103-013-1377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1377-3

Keywords

Navigation