Skip to main content
Log in

Application of reflectance confocal microscopy to evaluate skin damage after irradiation with an yttrium-scandium-gallium-garnet (YSGG) laser

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The objective of this study was to observe the characteristics of the skin after irradiation with a 2790-nm yttrium-scandium-gallium-garnet (YSGG) laser using reflectance confocal microscopy (RCM). A 2790-nm YSGG laser was used to irradiate fresh foreskin (four doses, at spot density 3) in vitro. The characteristics of microscopic ablative columns (MAC), thermal coagulation zone (TCZ), and microscopic treatment zones (MTZ) were observed immediately after irradiation using digital microscope and RCM. The characteristics of MAC, TCZ, and MTZ with variations in pulse energy were comparatively analyzed. After irradiation, MAC, TCZ, and MTZ characteristics and undamaged skin between MTZs can be observed by RCM. The depth and width of MTZ obviously increased with the increase in pulse energy. At 80, 120, and 160 mJ/microbeam (MB), the MTZ actual area and proportion were about two times that of the theoretical value and three times at 200 mJ/MB. With increases in depth, the single MAC gradually decreased in a fingertip-shaped model, with TCZ slowly increasing, and MTZ slightly decreasing in a columnar shape. RCM was able to determine the characteristics of thermal injury on the skin after the 2790-nm YSGG laser irradiation with different pulse energies. Pulse energy higher than 200 mJ/MB may have much larger thermal injury and side effect. RCM could be used in the clinic in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aslam A, Alster TS (2014) Evolution of laser skin resurfacing: from scanning to fractional technology. Dermatol Surg 40(11):1163–1172

    Article  CAS  PubMed  Google Scholar 

  2. Omi T, Numano K (2014) The role of the CO2 laser and fractional CO2 laser in dermatology. Laser Ther 23(1):49–60

    Article  PubMed  PubMed Central  Google Scholar 

  3. Manstein D, Herron GS, Sink RK, Tanner H, Anderson RR (2004) Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med 34(5):426–438

    Article  PubMed  Google Scholar 

  4. Hantash BM, Bedi VP, Kapadia B, Rahman Z, Jiang K, Tanner H, Chan KF, Zachary CB (2007) In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg Med 39(2):96–107

    Article  PubMed  Google Scholar 

  5. Smith KC, Schachter GD (2011) YSGG 2790-nm superficial ablative and fractional ablative laser treatment. Facial Plast Surg Clin North Am 19(2):253–260

    Article  PubMed  Google Scholar 

  6. Paasch U, Haedersdal M (2011) Laser systems for ablative fractional resurfacing. Expert Rev Med Devices 8(1):67–83

    Article  PubMed  Google Scholar 

  7. Walgrave SE, Kist DA, Noyaner-Turley A, Zelickson BD (2012) Minimally ablative resurfacing with the confluent 2,790 nm erbium:YSGG laser: a pilot study on safety and efficacy. Lasers Surg Med 44(2):103–111

    Article  PubMed  Google Scholar 

  8. Ciocon DH, Hussain M, Goldberg DJ (2011) High-fluence and high-spot density treatment of perioral rhytides using a new, fractionated 2,790-nm ablative erbium-doped yttrium scandium gallium garnet laser. Dermatol Surg 37(6):776–781

    CAS  PubMed  Google Scholar 

  9. Rhie JW, Shim JS, Choi WS (2015) A pilot study of skin resurfacing using the 2,790-nm erbium:YSGG laser system. Arch Plast Surg 42(1):52–88

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ross EV, Swann M, Soon S, Izadpanah A, Barnette D, Davenport S (2009) Full-face treatments with the 2790-nm erbium:YSGG laser system. J Drugs Dermatol 8(3):248–252

    PubMed  Google Scholar 

  11. Munavalli GS, Turley A, Silapunt S, Biesman B (2011) Combining confluent and fractionally ablative modalities of a novel 2790nm YSGG laser for facial resurfacing. Lasers Surg Med 43(4):273–282

    Article  PubMed  Google Scholar 

  12. Latowsky BC, Abbasi N, Dover JS, Arndt KA, Kaminer MS, Rohrer TE, Macgregor JL, Wesley NO, Durfee MA, Tahan SR (2012) A randomized, controlled trial of four ablative fractionated lasers for photoaging: a quadrant study. Dermatol Surg 38(9):1477–1489

    Article  CAS  PubMed  Google Scholar 

  13. Hantash BH, Bedi VP, Chan KF, Zachary CB (2007) Ex vivo histological characterization of a novel ablative fractional resurfacing device. Lasers Surg Med 39(39):87–95

    Article  PubMed  Google Scholar 

  14. Christina SH, Monica I, Uwe Paasch P, Hædersdal M (2011) Histological evaluation of vertical laser channels from ablative fractional resurfacing: an ex vivo pig skin model. Lasers Med Sci 26:465–471

    Article  Google Scholar 

  15. Uwe P, Merete H (2011) Laser systems for ablative fractional resurfacing. Expert Review of Med Devices 8(1):67–83

    Article  Google Scholar 

  16. Dierickx CC, Khatri KA, Tannous ZS, Childs JJ, Cohen RH, Erofeev A, Tabatadze D, Yaroslavsky IV, Altshuler GB (2008) Micro-fractional ablative skin resurfacing with two novel erbium laser systems. Lasers Surg Med 40(2):113–123

    Article  PubMed  Google Scholar 

  17. Wang H, Zhao Y, Huang W (2012) Histological evaluation of skin in vitro treated by noval Er: YSGG ablative fractional laser. Med J PUMCH 3(4):390–394

    Google Scholar 

  18. Gerger A, Koller S, Weger W, Richtig E, Kerl H, Samonigg H, Krippl P, Smolle J (2006) Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors. Cancer 107:193–200

    Article  PubMed  Google Scholar 

  19. Swindells K, Burnett N, Rius-Diaz F, González E, Mihm MC, González S (2004) Reflectance confocal microscopy may differentiate acute allergic and irritant contact dermatitis in vivo. J Am Acad Dermatol 50:220–228

    Article  PubMed  Google Scholar 

  20. Agero AL, Busam KJ, Benvenuto-Andrade C, González E, Mihm MC, González S (2006) Reflectance confocal microscopy of pigmented basal cell carcinoma. J Am Acad Dermatol 54:638–643

    Article  PubMed  Google Scholar 

  21. Liu H, Lin Y, Nie X, Chen S, Chen X, Shi B, Tian H, Shi Z, Yu M, Zhang D, Yang B, Wang G, Wu M, Zhang F (2011) Histological classification of melasma with reflectance confocal microscopy: a pilot study in Chinese patients. Skin Res Technol 17(4):398–403

    Article  PubMed  Google Scholar 

  22. Guida S, Longo C, Casari A, Ciardo S, Manfredini M, Reggiani C, Pellacani G, Farnetani F (2015) Update on the use of confocal microscopy in melanoma and non-melanoma skin cancer. G Ital Dermatol Venereol 150(5):547–556

    CAS  PubMed  Google Scholar 

  23. Cinotti E, Labeille B, Douchet C, Cambazard F, Perrot JL (2016) Role of dermoscopy and reflectance confocal microscopy as an aid in the diagnosis of exogenous ochronosis. Ann Dermatol Venereol 143(4):318–320

    Article  CAS  PubMed  Google Scholar 

  24. Guitera P, Scolyer RA, Gill M, Akita H, Arima M, Yokoyama Y, Matsunaga K, Longo C, Bassoli S, Bencini PL, Giannotti R, Pellacani G, Alessi-Fox C, Dalrymple C (2013) Reflectance confocal microscopy for diagnosis of mammary and extramammary Paget’s disease. J Eur Acad Dermatol Venereol 27(1):e24–e29

    Article  CAS  PubMed  Google Scholar 

  25. Hoogedoorn L, Peppelman M, van de Kerkhof PC, van Erp PE, Gerritsen MJ (2015) The value of in vivo reflectance confocal microscopy in the diagnosis and monitoring of inflammatory and infectious skin diseases: a systematic review. Br J Dermatol 172(5):1222–1248

    Article  CAS  PubMed  Google Scholar 

  26. Hibler BP, Sierra H, Cordova M, Phillips W, Rajadhyaksha M, Nehal KS, Rossi AM (2016) Carbon dioxide laser ablation of basal cell carcinoma with visual guidance by reflectance confocal microscopy: a proof of principle pilot study. Br J Dermatol 174(6):1359–1364

    Article  CAS  PubMed  Google Scholar 

  27. Sierra H, Damanpour S, Hibler B, Nehal K, Rossi A, Rajadhyaksha M (2016) Confocal imaging of carbon dioxide laser-ablated basal cell carcinomas: an ex-vivo study on the uptake of contrast agent and ablation parameters. Lasers Surg Med 48(2):133–139

    Article  PubMed  Google Scholar 

  28. Shin MK, Park JM, Lim HK, Choi JH, Baek JH, Kim HJ, Koh JS, Lee MH (2013) Characterization of microthermal zones induced by fractional radiofrequency using reflectance confocal microscopy: a preliminary study. Lasers Surg Med 45(8):503–508

    PubMed  Google Scholar 

  29. Banzhaf CA, Wind BS, Mogensen M, Meesters AA, Paasch U, Wolkerstorfer A, Haedersdal M (2016) Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy. Lasers Surg Med 48(2):157–165

    Article  PubMed  Google Scholar 

  30. Sattler EC, Poloczek K, Kästle R, Welzel J (2013) Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy. J Am Acad Dermatol 69(4):e165–e173

    Article  PubMed  Google Scholar 

  31. Richters RJ, Hoogedoorn L, Uzunbajakava NE, Janssen LD, Tom Nuijs AM, van Erp PE, van de Kerkhof PC (2016) Clinical, biophysical, immunohistochemical, and in vivo reflectance confocal microscopy evaluation of the response of subjects with sensitive skin to home-use fractional non-ablative photothermolysis device. Lasers Surg Med 48(5):474–482

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Wang or Linfeng Li.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Beijing Tian Tan Hospital, Capital Medical University research committee and with the declaration of Helsinki.

Funding

This study was not supported by any fund.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Linfeng Li and Hongwei Wang contributed equally to this work as the co-corresponding authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Wang, H., Li, Q. et al. Application of reflectance confocal microscopy to evaluate skin damage after irradiation with an yttrium-scandium-gallium-garnet (YSGG) laser. Lasers Med Sci 32, 255–262 (2017). https://doi.org/10.1007/s10103-016-2106-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2106-5

Keywords

Navigation