Skip to main content

Advertisement

Log in

Does ultra-pulse CO2 laser reduce the risk of enamel damage during debonding of ceramic brackets?

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study seeks to evaluate the enamel surface characteristics of teeth after debonding of ceramic brackets with or without laser light. Eighty premolars were bonded with either of the chemically retained or the mechanically retained ceramic brackets and later debonded conventionally or through a CO2 laser (188 W, 400 Hz). The laser was applied for 5 s with scanning movement. After debonding, the adhesive remnant index (ARI), the incidence of bracket and enamel fracture, and the lengths, frequency, and directions of enamel cracks were compared among the groups. The increase in intrapulpal temperature was measured in ten extra specimens. The data were analyzed with SPSS software. There was one case of enamel fracture in the chemical retention/conventional debonding group. When brackets were removed with pliers, incidences of bracket fracture were 45% for the chemical retention, and 15% for the mechanical retention brackets. No case of enamel or bracket fracture was seen in the laser-debonded teeth. A significant difference was observed in ARI scores among the groups. Laser debonding caused a significant decrease in the frequency of enamel cracks, compared to conventional debonding. The increase in intrapulpal temperatures was below the benchmark of 5.5 °C for all the specimens. Laser-assisted debonding of ceramic brackets could reduce the risk of enamel damage and bracket fracture, and produce the more desirable ARI scores without causing thermal damage to the pulp. However, some augmentations in the length and frequency of enamel cracks should be expected with all debonding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artun J (1997) A post-treatment evaluation of multibonded ceramic brackets in orthodontics. Eur J Orthod 19(2):219–228

    Article  PubMed  CAS  Google Scholar 

  2. Bishara SE, Ostby AW, Laffoon J, Warren JJ (2008) Enamel cracks and ceramic bracket failure during debonding in vitro. Angle Orthod 78(6):1078–1083. doi:10.2319/112007-540.1

    Article  PubMed  Google Scholar 

  3. Joseph VP, Rossouw E (1990) The shear bond strengths of stainless steel and ceramic brackets used with chemically and light-activated composite resins. Am J Orthod Dentofacial Orthop 97(2):121–125

    Article  PubMed  CAS  Google Scholar 

  4. Winchester LJ (1991) Bond strengths of five different ceramic brackets: an in vitro study. Eur J Orthod 13(4):293–305

    PubMed  CAS  Google Scholar 

  5. Bishara SE (2000) Ceramic brackets and the need to develop national standards. Am J Orthod Dentofacial Orthop 117(5):595–597

    Article  PubMed  CAS  Google Scholar 

  6. Ozcan M, Finnema K, Ybema A (2008) Evaluation of failure characteristics and bond strength after ceramic and polycarbonate bracket debonding: effect of bracket base silanization. Eur J Orthod 30(2):176–182. doi:10.1093/ejo/cjm100

    Article  PubMed  CAS  Google Scholar 

  7. Strobl K, Bahns TL, Willham L, Bishara SE, Stwalley WC (1992) Laser-aided debonding of orthodontic ceramic brackets. Am J Orthod Dentofacial Orthop 101(2):152–158

    Article  PubMed  CAS  Google Scholar 

  8. Dovgan JS, Walton RE, Bishara SE (1995) Electrothermal debracketing: patient acceptance and effects on the dental pulp. Am J Orthod Dentofacial Orthop 108(3):249–255

    Article  PubMed  CAS  Google Scholar 

  9. Jost-Brinkmann PG, Stein H, Miethke RR, Nakata M (1992) Histologic investigation of the human pulp after thermodebonding of metal and ceramic brackets. Am J Orthod Dentofacial Orthop 102(5):410–417

    Article  PubMed  CAS  Google Scholar 

  10. Ma T, Marangoni R, Flint W (1997) In vitro comparison of debonding force and intrapulpal temperature changes during ceramic orthodontic bracket removal using a carbon dioxide laser. Am J Orthod Dentofacial Orthop 111(2):203–210

    Article  PubMed  CAS  Google Scholar 

  11. Oztoprak MO, Nalbantgil D, Erdem AS, Tozlu M, Arun T (2010) Debonding of ceramic brackets by a new scanning laser method. Am J Orthod Dentofacial Orthop 138(2):195–200. doi:10.1016/j.ajodo.2009.06.024

    Article  PubMed  Google Scholar 

  12. Tehranchi A, Fekrazad R, Zafar M, Eslami B, Kalhori KA, Gutknecht N (2010) Evaluation of the effects of CO(2) laser on debonding of orthodontics porcelain brackets vs. the conventional method. Lasers Med Sci. doi:10.1007/s10103-010-0820-y

    PubMed  Google Scholar 

  13. Tocchio RM, Williams PT, Mayer FJ, Standing KG (1993) Laser debonding of ceramic orthodontic brackets. Am J Orthod Dentofacial Orthop 103(2):155–162

    Article  PubMed  CAS  Google Scholar 

  14. Hayakawa K (2005) Nd:YAG laser for debonding ceramic orthodontic brackets. Am J Orthod Dentofacial Orthop 128(5):638–647. doi:10.1016/j.ajodo.2005.03.018

    Article  PubMed  Google Scholar 

  15. Nalbantgil D, Oztoprak MO, Tozlu M, Arun T (2010) Effects of different application durations of ER:YAG laser on intrapulpal temperature change during debonding. Lasers Med Sci. doi:10.1007/s10103-010-0796-7

    PubMed  Google Scholar 

  16. Iijima M, Yasuda Y, Muguruma T, Mizoguchi I (2010) Effects of CO(2) laser debonding of a ceramic bracket on the mechanical properties of enamel. Angle Orthod 80(6):1029–1035. doi:10.2319/041210-204.1

    Article  PubMed  Google Scholar 

  17. Obata A, Tsumura T, Niwa K, Ashizawa Y, Deguchi T, Ito M (1999) Super pulse CO2 laser for bracket bonding and debonding. Eur J Orthod 21(2):193–198

    Article  PubMed  CAS  Google Scholar 

  18. Azzeh E, Feldon PJ (2003) Laser debonding of ceramic brackets: a comprehensive review. Am J Orthod Dentofacial Orthop 123(1):79–83. doi:10.1067/mod.2003.2

    Article  PubMed  Google Scholar 

  19. Kitahara-Ceia FM, Mucha JN, Marques dos Santos PA (2008) Assessment of enamel damage after removal of ceramic brackets. Am J Orthod Dentofacial Orthop 134(4):548–555. doi:10.1016/j.ajodo.2006.08.022

    Article  PubMed  Google Scholar 

  20. Shahabi M, Heravi F, Mokhber N, Karamad R, Bishara SE (2010) Effects on shear bond strength and the enamel surface with an enamel bonding agent. Am J Orthod Dentofacial Orthop 137(3):375–378. doi:10.1016/j.ajodo.2008.03.030

    Article  PubMed  Google Scholar 

  21. Zachrisson BU, Skogan O, Hoymyhr S (1980) Enamel cracks in debonded, debanded, and orthodontically untreated teeth. Am J Orthod 77(3):307–319

    Article  PubMed  CAS  Google Scholar 

  22. Fox NA, McCabe JF, Buckley JG (1994) A critique of bond strength testing in orthodontics. Br J Orthod 21(1):33–43

    PubMed  CAS  Google Scholar 

  23. Artun J, Bergland S (1984) Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am J Orthod 85(4):333–340

    Article  PubMed  CAS  Google Scholar 

  24. Ben-Baruch G, Fidler JP, Wessler T, Bendick P, Schellhas HF (1988) Comparison of wound healing between chopped mode-superpulse mode CO2 laser and steel knife incision. Lasers Surg Med 8(6):596–599

    Article  PubMed  CAS  Google Scholar 

  25. Vukovich ME, Wood DP, Daley TD (1991) Heat generated by grinding during removal of ceramic brackets. Am J Orthod Dentofacial Orthop 99(6):505–512

    Article  PubMed  CAS  Google Scholar 

  26. Chen HY, Su MZ, Chang HF, Chen YJ, Lan WH, Lin CP (2007) Effects of different debonding techniques on the debonding forces and failure modes of ceramic brackets in simulated clinical set-ups. Am J Orthod Dentofacial Orthop 132(5):680–686. doi:10.1016/j.ajodo.2006.01.035

    Article  PubMed  Google Scholar 

  27. Bishara SE, Trulove TS (1990) Comparisons of different debonding techniques for ceramic brackets: an in vitro study. Part II. Findings and clinical implications. Am J Orthod Dentofacial Orthop 98(3):263–273

    Article  PubMed  CAS  Google Scholar 

  28. Viazis AD, Cavanaugh G, Bevis RR (1990) Bond strength of ceramic brackets under shear stress: an in vitro report. Am J Orthod Dentofacial Orthop 98(3):214–221

    Article  PubMed  CAS  Google Scholar 

  29. Forsberg CM, Hagberg C (1992) Shear bond strength of ceramic brackets with chemical or mechanical retention. Br J Orthod 19(3):183–189

    PubMed  CAS  Google Scholar 

  30. Liu JK, Chung CH, Chang CY, Shieh DB (2005) Bond strength and debonding characteristics of a new ceramic bracket. Am J Orthod Dentofacial Orthop 128(6):761–765. doi:10.1016/j.ajodo.2004.03.041, quiz 802

    Article  PubMed  Google Scholar 

  31. Wang WN, Meng CL, Tarng TH (1997) Bond strength: a comparison between chemical coated and mechanical interlock bases of ceramic and metal brackets. Am J Orthod Dentofacial Orthop 111(4):374–381

    Article  PubMed  CAS  Google Scholar 

  32. Heravi F, Rashed R, Raziee L (2008) The effects of bracket removal on enamel. Aust Orthod J 24(2):110–115

    PubMed  Google Scholar 

  33. Eliades T, Viazis AD, Lekka M (1993) Failure mode analysis of ceramic brackets bonded to enamel. Am J Orthod Dentofacial Orthop 104(1):21–26

    Article  PubMed  CAS  Google Scholar 

  34. Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Chancellor of Mashhad University of Medical Sciences who financially supported this research. Sincere thanks are also expressed to Dr. Roozbeh Rashed for his great assistance in performing this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahimeh Farzanegan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahrari, F., Heravi, F., Fekrazad, R. et al. Does ultra-pulse CO2 laser reduce the risk of enamel damage during debonding of ceramic brackets?. Lasers Med Sci 27, 567–574 (2012). https://doi.org/10.1007/s10103-011-0933-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-0933-y

Keywords

Navigation