Skip to main content

Advertisement

Log in

Fifty years devoted to anaerobes: historical, lessons, and highlights

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Renew interest and enthusiasm for anaerobes stem from both technological improvements (culture media, production of an adequate anaerobic atmosphere, identification methods) and greater awareness on the part of clinicians. Anaerobic infections were historically treated empirically, targeting the species known to be involved in each type of infection. Prevotella, fusobacteria, and Gram-positive cocci (GPAC) were considered responsible for infections above the diaphragm whereas for intra-abdominal infections, Bacteroides of the fragilis group (BFG), GPAC and clostridia were predominantly implicated. The antibiotic susceptibility of anaerobes was only taken into consideration by the clinician in the event of treatment failure or when faced with infections by multidrug-resistant bacteria (MDR). The evolution of antibiotic resistance together with clinical failures due to the absence of detection of hetero-resistant clones has resulted in a greater need for accessible antibiotic susceptibility testing (AST) and disc diffusion method. Improved isolation and identification of anaerobes, along with the availability of accessible and robust methods for performing AST, will ensure that treatment, whether empirical or guided by an antibiogram, will lead to better outcomes for anaerobic infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Wilson SE, Judith A, Hopkins F (1995) Clinical correlates of anaerobic bacteriology in peritonitis. Clin Infect Dis 20(Suppl 2):S251–S256. https://doi.org/10.1093/clinids/20.supplement_2.s251

    Article  PubMed  Google Scholar 

  2. McNamara MJ, Pasquale MD, Evans SR (1993) Acute appendicitis and the use of intraperitoneal cultures. Surg Gynecol Obstet 177(393):7

    Google Scholar 

  3. Mosdell DM, Morris DM, Voltura A, Pitcher DE, Twiest MW, Milne RL, Miscall BG, Fry DE (1991) Antibiotic treatment for surgical peritonitis. Ann Surg 214:543–549. https://doi.org/10.1097/00000658-199111000-00001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dougherty SH, Saltzstein EC, Peacock JB, Mercer LC, Cano P (1989) Perforated or gangrenous appendicitis treated with aminoglycosides: how do bacterial cultures influence management? Arch Surg 124:1280–1283. https://doi.org/10.1001/archsurg.1989.01410110034006

    Article  CAS  Google Scholar 

  5. Chow AW, Guze LB (1974) Bacteroidaceae bacteremia: clinical experience with 112 patients. Medicine (Baltimore) 53:93–126

    Article  CAS  Google Scholar 

  6. Hopkins JA, Lee JCH (1993) Susceptibility of intra-abdominal isolates at operation. A predictor of postoperative infection. Ann Surg 59:791–6

    CAS  Google Scholar 

  7. Koperna T, Schulz F (1996) Prognosis and treatment of peritonitis. Do we need new scoring systems? Arch Surg 131:180–6. https://doi.org/10.1001/archsurg.1996.01430140070019

    Article  CAS  PubMed  Google Scholar 

  8. Rosenblatt JE, Brook I (1993) Clinical relevance of susceptibility testing of anaerobic bacteria. Clin Infect Dis 16(suppl 4):S446–S448. https://doi.org/10.1093/clinids/16.supplement4.s446

    Article  PubMed  Google Scholar 

  9. Snydman DR, Cuchural GJ Jr, McDermott L, Gill M (1992) Correlation of various in vitro testing methods with clinical outcomes in patients with Bacteroides fragilis group infections treated with cefoxitin: a retrospective analysis. Antimicrob Agents Chemother 36:540–544. https://doi.org/10.1128/AAC.36.3.540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salonen JH, Eerola E, Meurman O (1998) Clinical significance and outcome of anaerobic bacteremia. Clin Infect Dis 26:1413–1417. https://doi.org/10.1086/516355

    Article  CAS  PubMed  Google Scholar 

  11. Finegold SM, George WL. Milligan ME (1986) A disease-a-month classic. Anaerobic infections. Year book medical publishers, INC Chicago, London

  12. Brook I (1988) Recovery of anaerobic bacteria from clinical specimen in 12 years at two military hospitals. J Clin Microbiol 26:1181–1188. https://doi.org/10.1128/jcm.26.6.1181-1188.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brook I (1988) Pediatric anaerobic infection. Diagnostics and management, 2nd edn. Mosby Company, St Louis Missouri

  14. Duerden BI, Drasar BS (1991) Anaerobes in human disease. Arnold, London

    Google Scholar 

  15. Di Bella S, Antonello RM, Sanson G, Maraolo AE, Giacobbe DR et al (2022) Anaerobic bloodstream infections in Italy (ITANAEROBY): a 5-year retrospective nationwide survey. Anaerobe 75:102583. https://doi.org/10.1016/j.anaerobe.2022.102583

    Article  PubMed  Google Scholar 

  16. Engelkirk PG, Duben-Engelkirk J, Dowell VR (1992) Principles and practice of clinical anaerobic bacteriology. Star publishing Co, Belmont

    Google Scholar 

  17. Jousimies-Somer H, Summanen P, Citron DM, Baron JE, Wexler HM, Finegold SM (2002) Wadsworth-KTL anaerobic bacteriology manual, 6th edn. Star Publishing Company, Belmont

    Google Scholar 

  18. Sedallian A, Dubreuil L, Riegel P (2019) Généralités sur les bactéries anaérobies. In: Freney J, Riegel P (eds) Bactériologie clinique 3rd editions. ESKA, Paris, pp 1338–57

    Google Scholar 

  19. Nagy E, Boyanova L, Justesen US, on behalf of ESCMID Study Group of Anaerobic Infections (2018) How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories. Clin Microbiol Infect 24:1139–1148. https://doi.org/10.1016/j.cmi.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  20. Montravers P, Lepape A, Dubreuil L, Gauzit R, Pean Y, Benchimol D, Dupont H (2009) Clinical and microbiological profiles of community-acquired and nosocomial intra-abdominal infections: results of the French prospective, observational EBIIA study. J Antimicrob Chemother 63:785–794. https://doi.org/10.1093/jac/dkp005

    Article  CAS  Google Scholar 

  21. Baron EJ, Strong CA, Mc Teague M, Vaisanen ML, Finegold SM (1995) Survival of anaerobic bacteria in original specimens transported by overnight services. Clin Infect Dis 20(Suppl 2):S174–S177. https://doi.org/10.1093/clinids/20.Supplement_2.S174

    Article  PubMed  Google Scholar 

  22. Senneville E, Savage C, Nallet I, Yazdanpanah Y, Giraud F, Migaud H, Dubreuil L, Courcol R, Mouton Y (2006) Improved aero-anaerobe recovery from infected prosthetic joint samples taken from 72 patients and collected intraoperatively in Rosenow’s broth. Acta Orthop 77:120–124. https://doi.org/10.1080/17453670610045795

    Article  PubMed  Google Scholar 

  23. Rosenow EC (1914) The newer bacteriology of various infections as determined by special methods. J Am Med Ass 63:903–908

    Article  Google Scholar 

  24. Justesen US, Skov MN, Knudsen E, Holt HM, Sogaard P, Justesen T (2010) 16S rRNA gene sequencing in routine identification of anaerobic bacteria isolated from blood cultures. J Clin Microbiol 48:946–948. https://doi.org/10.1128/JCM.02075-09

    Article  CAS  PubMed Central  Google Scholar 

  25. Justesen US, Holm A, Knudsen E, Andersen LB, Jensen TG, Kemp M (2011) Species identification of clinical isolates of anaerobic bacteria: comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems. J Clin Microbiol 49:4314–4318. https://doi.org/10.1128/JCM.05788-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nagy E, Becker S, Kostrewa M, Barta N, Urban E (2012) The value of MALDI-TOF MS for the identification of clinically relevant anaerobic bacteria in routine laboratories. J Med Microbiol 61:1393–1400. https://doi.org/10.1099/jmm.0.043927-0

    Article  CAS  PubMed  Google Scholar 

  27. Medceky M, Cejkova D, Polansky O, Karasova D, Kubosava T, Ciizek A, Rychlik I (2018) Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics 31:561. https://doi.org/10.1186/s12864-018-4959-4

    Article  CAS  Google Scholar 

  28. Dubreuil L (2010) Methods for antimicrobial susceptibility testing of anaerobic bacteria. Méthodes d’étude des anaérobies. In: Courvalin P, Leclercq R, Rice LB (eds) Antibiogramme. Eska, Paris, pp 553–67

    Google Scholar 

  29. Finegold SM (1992) Clinical relevance of antimicrobial susceptibility testing. Eur J Clin Microbiol Infect Dis 1002:1021–1024. https://doi.org/10.1007/BF01967793

    Article  Google Scholar 

  30. Brook I, Wexler HM, Goldstein EJC (2013) Antianaerobic antimicrobials: spectrum and susceptibility testing. Clin Microbiol Rev 26:526–546. https://doi.org/10.1128/CMR.00086-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bourgault AM, Harkness JL, Rosenblatt JE (1978) Clinical usefulness of susceptibility testing of anaerobes. Arch Intern Med 138(1825):7. https://doi.org/10.1001/archinte.1978.03630370039019

    Article  Google Scholar 

  32. Clinical and Laboratory Standards Institute (2012) Methods for anti-microbial susceptibility testing of anaerobic bacteria. Approved standard, 8th ed. CLSI document M11-A8. Clinical and Laboratory Standards Institute, Wayne, PA.

  33. Hecht DW, Lederer L, Osmolski JR (1995) Susceptibility results for the Bacteroides fragilis group: comparison of the broth microdilution and agar dilution methods. Clin Infect Diseases 20(Suppl 2):S342. https://doi.org/10.1093/clinids/20.supplement_2.s342

    Article  CAS  Google Scholar 

  34. Baron EJ, David AB (1984) Comparison of susceptibilities of anaerobic bacteria determined by agar dilution and by a microbroth. Method Rev infect Dis 6(suppl1):S249–S253. https://doi.org/10.1093/clinids/6.supplement1.s249

    Article  PubMed  Google Scholar 

  35. Hughes C, Ashhurst-Smith C, Ferguson JK (2018) Gram negative anaerobe susceptibility testing in clinical isolates using Sensititre and Etest methods. Pathology 9:437–41. https://doi.org/10.1016/j.pathol.2017.10.020

    Article  CAS  Google Scholar 

  36. Cherkaoui A, Fischer A, Azam N, Riat A, Schrenzel J (2018) A comparison of sensititre TM Anaerobe MIC plate with ATB ANA® test for the routine susceptibility testing of common anaerobe pathogens. Eur J Clin Microbiol Infect Dis 37:2279–2284. https://doi.org/10.1007/s10096-018-3369-5

    Article  CAS  Google Scholar 

  37. Cordovana M, Ambretti S (2020) Antibiotic susceptibility testing of anaerobic bacteria by broth microdilution method using the MICRONAUT-S anaerobes MIC plates. Anaerobe 63:102217. https://doi.org/10.1016/j.anaerobe.2020.102217

    Article  CAS  PubMed  Google Scholar 

  38. Koru O, Ozyurt M (2008) Determination of antimicrobial susceptibilities of clinically isolated anaerobic bacteria by E-test ATB-ANA and agar dilution. Anaerobe 14:161–165. https://doi.org/10.1016/j.anaerobe.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  39. FDA-Antimicrobial Susceptibility Test (AST) Systems—Class ii Special Controls Guidance for Industry and FDA (2018) FDA. Available online: https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/antimicrobial-susceptibility-test-ast-systems-class-ii-special-controls-guidance-industry-and-fda

  40. Lee K, Yunseop J, Kwon O, Jang In I, Song W, Yoon G (1992) Evaluation of A commercial microdilution (ATB ANA) system for susceptibility testing of anaerobic bacteria. Korean J Clin Pathol 1992; 12: 341–6. Reported in English In: Ann Lab Med 12: 341–346

  41. Dubreuil L, Houcke I, Singer E (1999) Susceptibility Testing of anaerobic bacteria: evaluation of the redesigned (version 96) bioMerieux ATB ANA device. J Clin Microbiol 37:1824–1828. https://doi.org/10.1128/JCM.37.6.1824-1828.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Citron DM, Ostavari MI, Karlsson A, Goldstein EJ (1991) Evaluation of the E test for susceptibility testing of anaerobic bacteria. J Clin Microbiol 29:2197–2203. https://doi.org/10.1128/jcm.29.10.2197-2203.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baquer F, Sawan AA, Auzou M, Grillon A, Jaulhac B, Join-Lambert O, Boyer PH (2021) Broth microdilution and gradient diffusion strips vs. reference agar dilution method: first evaluation for clostridiales species antimicrobial susceptibility testing antibiotics. Antibiotics (Basel) 10:975. https://doi.org/10.3390/antibiotics10080975

    Article  CAS  PubMed  Google Scholar 

  44. Rennie RP, Turnbulla L, Brosnikoffa C, Cloke J (2012) First comprehensive evaluation of the MIC evaluator device compared to e test and CLSI reference dilution methods for antimicrobial susceptibility testing of clinical strains of anaerobes and other fastidious bacterial species. J Clin Microbiol 50:1153–1157. https://doi.org/10.1128/JCM.05397-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rentenaar RJ, Bovo-Heijmans B, Diggle J, Fluit C, Wootton M (2021) False amoxicillin/clavulanic acid susceptibility in Bacteroides fragilis using gradient strip tests. Anaerobe 69:102358. https://doi.org/10.1016/j.anaerobe.2014.10.008

    Article  CAS  Google Scholar 

  46. Palmer J, Chen S, Gottlieb T, Schiog F, Gilbert G (1994) False resistance to metronidazole of anaerobic bacteria using the E test. J Antimicrob Chemother 34:598–600. https://doi.org/10.1093/jac/34.4.598

    Article  CAS  PubMed  Google Scholar 

  47. Wilkins TD, Holdeman LV, Abramson IJ (1972) Standardized single disk method for antibiotic susceptibility testing of anaerobic bacteria. Antimicrob Agents Chemother 1:451–459. https://doi.org/10.1128/AAC.1.6.451

    Article  CAS  PubMed Central  Google Scholar 

  48. Horn R, Bourgault AM, Lamothe F (1987) Disk diffusion susceptibility testing of the Bacteroides fragilis group. Antimicrob Agents Chemother 31:1596–1599. https://doi.org/10.1128/AAC.31.10.1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barry AL, Fuchs PC, Gerlach EH, Allen SD, Acar JF, Aldridge KE, Bourgault AM et al (1990) Multilaboratory evaluation of an agar diffusion disk susceptibility test for rapidly growing anaerobic bacteria. Rev Infect Dis 12(suppl2):S210-217. https://doi.org/10.1093/clinids/12.Supplement_2.S210.S210-217

    Article  CAS  PubMed  Google Scholar 

  50. Nagy E, Justesen US, Eitel Z, Urbán E, ESCMID study group on anaerobic infection (2015) Development of EUCAST disk diffusion method for susceptibility testing of the Bacteroides fragilis group isolates. Anaerobe 31:65–71. https://doi.org/10.1093/jac/dkw436

    Article  CAS  PubMed  Google Scholar 

  51. Finegold SM (1990) Anaerobes: problems and controversies in bacteriology, infections, and susceptibility testing. Rev Infect Dis 12(suppl2):S223–S230. https://doi.org/10.1093/clinids/12.Supplement_2.S223

    Article  PubMed  Google Scholar 

  52. Anaerobic bacteria Calibration of zone diameter breakpoints to MIC values Version 3.0 August 2023 http://www.eucast.org/

  53. CA-SFM (2011) Comité de l’antibiogramme. Recommandations, Société Française de microbiologie, https://www.sfm-microbiologie.org/

  54. Dubreuil L, on behalf the Members of the CA-SFM 2019 (2020) Improvement of a disk diffusion method for antibiotic susceptibility testing of anaerobic bacteria. French recommendations revisited for 2020. Anaerobe 64:102213. https://doi.org/10.1016/j.anaerobe.2020.102213

    Article  CAS  PubMed  Google Scholar 

  55. Phillips I, King A, Nord CE, Hoffstedt B (1992) Antibiotic sensitivity of Bacteroides fragilis group in Europe. Eur J Clin Microbiol Infect Dis 11:292–304. https://doi.org/10.1007/BF01962068

    Article  CAS  PubMed  Google Scholar 

  56. Hedberg M, Nord CE (2003) Antimicrobial susceptibilities of Bacteroides fragilis groupisolates in Europe. Clin Microbiol Infect 9:475–488. https://doi.org/10.1046/j.1469-0691.2003.00674.x

    Article  CAS  PubMed  Google Scholar 

  57. Nagy E, Urban E, Nord CE, on behalf of the ESCMID study group on antimicrobial resistance in anaerobic bacteria (2011) Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin Microbiol Infect 17:371–9. https://doi.org/10.1111/j.1469-0691.2010.03256.x

    Article  CAS  PubMed  Google Scholar 

  58. Betriu C, Rodríguez-Avial I, Gómez M, Culebras E, Picazo JJ (2005) Changing patterns of fluoroquinolone resistance among Bacteroides fragilis group organisms over a 6-year period (1997–2002). Diagn Microbiol Infect Dis 53:221–223. https://doi.org/10.1016/j.diagmicrobio.2005.06.012

    Article  CAS  PubMed  Google Scholar 

  59. Veloo ACM, Tokman HB, Jean-Pierre H, Dumont Y, Jeverica S, Lienhard R, Novak A, Rodloff A, Rotimi V, Wybo I, Nagy E (2020) Antimicrobial susceptibility profiles of anaerobic bacteria, isolated from human clinical specimens, within different European and surrounding countries. A joint ESGAI study. Anaerobe 61:102111. https://doi.org/10.1016/j.anaerobe.2019.102111

    Article  CAS  PubMed  Google Scholar 

  60. Behra-Miellet J, Calvet L, Mory F, Muller C, Chomarat M, Bézian MC, Bland S et al (2003) Antibiotic resistance among anaerobic Gram-negative bacilli: lessons from a French multicentric survey. Anaerobe 9:105–111. https://doi.org/10.1016/S1075-9964(03)00066-0

    Article  CAS  Google Scholar 

  61. Koeth LM, Good CE, Appelbaum PC, Goldstein EJ, Rodloff AC, Claros M, Dubreuil L (2004) Surveillance of susceptibility patterns in 1297 European and US anaerobic and capnophilic isolates to co-amoxiclav and five other antimicrobial agents. J Antimicrob Chemother 53:1039–1044. https://doi.org/10.1093/jac/dkh248

    Article  CAS  PubMed  Google Scholar 

  62. Brazier J, Chmelar D, Dubreuil L, Feierl G, Hedberg M, Kalenic S et al (2008) European surveillance study on antimicrobial susceptibility of Gram-positive anaerobic cocci. Int J Antimicrob Agents 31:316–320. https://doi.org/10.1016/j.ijantimicag.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  63. Boyanova L, Kolarov R, Mitov I (2015) Recent evolution of antibiotic resistance in the anaerobes as compared to previous decades. Anaerobe 31:4–10. https://doi.org/10.1016/j.anaerobe.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  64. Dubreuil L, Odou MF (2010) Anaerobic bacteria and antibiotics: what kind of unexpected resistance could I find in my laboratory tomorrow? Anaerobe 16:555–559. https://doi.org/10.1016/j.anaerobe.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  65. Theron MM, Van Rensburg J, Chalkley LJ (2004) Nitroimidazole resistance genes (nimB) in anaerobic Gram-positive cocci (previously Peptostreptococcus spp). J Antimicrob Chemother 54:240–2. https://doi.org/10.1093/jac/dkh270

    Article  CAS  PubMed  Google Scholar 

  66. Faris B, Faris C, Clark J, Brown R, Poxton IR (1999) Metronidazole-resistant strain of Clostridium perfringens isolated from a clinical specimen. J Infect 39:164–165. https://doi.org/10.1016/s0163-4453(99)90013-0

    Article  CAS  PubMed  Google Scholar 

  67. Wong SS, Woo PC, Luk WK, Yuen KY (1999) Susceptibility testing of Clostridium difficile against metronidazole and vancomycin by disk diffusion and E-test. Diagn Microbiol Infect Dis 34:1–6. https://doi.org/10.1016/s0732-8893(98)00139-4

    Article  CAS  PubMed  Google Scholar 

  68. Peláez T, Alcalá L, Alonso R, Rodríguez-Créixems M, García-Lechuz JM, Bouza E (2002) Reassessment of Clostridium difficile susceptibility to metronidazole and vancomycin. Antimicrob Agents Chemother 46:1647–1650. https://doi.org/10.1128/AAC.46.6.1647-1650.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mory F, Carlier JP, Alauzet C, Thouvenin M, Schuhmacher H, Lozniewski A (2005) Bacteremia caused by a metronidazole-resistant Prevotella. J Clin Microbiol 43:5380–5383. https://doi.org/10.1128/JCM.43.10.5380-5383.2005

    Article  PubMed Central  Google Scholar 

  70. Sandoe AT, Struthers JK, Brazier JS (2001) Subdural empyema caused by Prevotella loescheii with reduced susceptibility to metronidazole. J Antimicrob Chemother 47:366–367. https://doi.org/10.1093/jac/47.3.366

    Article  CAS  PubMed  Google Scholar 

  71. Chauldhry R, Mathur P, Dhawan B, Kumar L (2001) Emergence of metronidazole- resistant Bacteroides fragilis. India Emerg Infect Dis 7:485–486. https://doi.org/10.3201/eid0703.010332

    Article  Google Scholar 

  72. Rotimi VO, Khoursheed M, Brazier JS, Jamal WY, Khodakhast FB (1999) Bacteroides species highly resistant to metronidazole: an emerging clinical problem. Clin Microbiol Infect 5:166–169. https://doi.org/10.1111/j.1469-0691.1999.tb00531.x

    Article  Google Scholar 

  73. Shapiro JM, Gupta R, Stefansson E, Fang FC, Limaye AP (2004) Isolation of metronidazole-resistant Bacteroides fragilis carrying the nimA nitroreductase gene from a patient in Washington state. J Clin Microbiol 42:4127–9. https://doi.org/10.1128/JCM.42.9.4127-4129.2004

    Article  CAS  Google Scholar 

  74. Marchandin H, Jean-Pierre H, Campos J, Dubreuil L, Teyssier C, Jumas-Bilak E (2004) NimE gene in a metronidazole-susceptible Veillonella sp. strain. Antimicrob Agents Chemother 48:3207–8. https://doi.org/10.1128/AAC.48.8.3207-3208.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alauzet C, Lozniewski A, Marchandin H (2019) Metronidazole resistance and nim genes in anaerobes: a review. Anaerobe 55:40–53. https://doi.org/10.1016/j.anaerobe.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  76. Ghotaslou R, Bannazadeh Baghi H, Alizadeh N, Yekani M, Arbabi S, Memar MY (2018) Mechanisms of Bacteroides fragilis resistance to metronidazole. Infect Genet Evol 64:156–163. https://doi.org/10.1016/j.meegid.2018.06.020

    Article  CAS  PubMed  Google Scholar 

  77. O’Grady K, Knight DR, Riley TV (2021) Antimicrobial resistance in Clostridioides difficile. Eur J Clin Microbiol Infect Dis 40:2459–2478. https://doi.org/10.1007/s10096-021-04311-5

    Article  PubMed  Google Scholar 

  78. Wickramage I, Spigaglia P, Sun X (2021) Mechanisms of antibiotic resistance of Clostridioides difficile. J Antimicrob Chemother 76:3077–3090. https://doi.org/10.1093/jac/dkab231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sóki J, Eitel Z, Urbán E, Nagy E, on behalf of the ESCMID Study Group on Anaerobic Infections (2013) Molecular analysis of the carbapenem and metronidazole resistance mechanisms of Bacteroides strains reported in a Europe-wide antibiotic resistance survey. Int J Antimicrob Agents 41:122–5. https://doi.org/10.1016/j.ijantimicag.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  80. Pelaez T, Cercenado E, Alcala L, Marín M, Martín-Lopez A, Martínez- Alarcon J, Catalan P, Sanchez-Somolinos M, Bouza E (2008) Metronidazole resistance in Clostridium difficile is heterogeneous. J Clin Microbiol 46:3028–3032. https://doi.org/10.1128/JCM.00524-08

    Article  CAS  PubMed Central  Google Scholar 

  81. Hidri N, Barraud O, Garnier F, Martin C, Ploy MC, Denis F (2008) A propos d'une souche de Eggerthella lenta isolée dans une hémoculture résistante a l'Imipénème. Poster. 38th Réunion interdisciplinaire de chimiothérapie anti- infectieuse, RICAI. Paris, France

  82. Dubreuil L, Veloo AC, Sóki J, on behalf of the ESCMID Study Group for Anaerobic Infections (ESGAI) (2021) Correlation between antibiotic resistance and clinical outcome of anaerobic infections; mini-review. Anaerobe 72:102463. https://doi.org/10.1016/j.anaerobe.2021.102463

    Article  CAS  PubMed  Google Scholar 

  83. Baaity Z, von Loewenich FD, Nagy E, Orosz L, Burián K, Somogyvári F, Sóki J (2022) Phenotypic and molecular characterization of carbapenem-heteroresistant Bacteroides fragilis strains. Antibiotics (Basel) 11:590. https://doi.org/10.3390/antibiotics11050590

    Article  CAS  PubMed Central  Google Scholar 

  84. Mazuet C, Yoon EJ, Boyer S, Pignier S, Blanc T, Doehring I, Meziane-Cherif D, Dumant-Forest C, Sautereau J, Legeay C, Bouvet P, Bouchier C, Quijano-Roy S, Pestel-Caron M, Courvalin P, Popoff MR (2016) A penicillin- and metronidazole-resistant Clostridium botulinum strain responsible for an infant botulism case. Clin Microbiol Infect 22:644. https://doi.org/10.1016/j.cmi.2016.04.011

    Article  Google Scholar 

  85. Song Y, Liu C, Molitoris DR, Tomzynski TJ, Lawson PA, Collins MD, Finegold SM (2003) Clostridium bolteae sp. nov., isolated from human sources. Syst Appl Microbiol 26:84–9. https://doi.org/10.1078/072320203322337353

    Article  CAS  PubMed  Google Scholar 

  86. Bouvet P, K’Ouas G, Le Coustumier A, Popoff MR (2012) Clostridium celerecrescens, often misidentified as “Clostridium clostridioforme group”, is involved in rare human infection cases. Diagn Microbiol Infect Dis 74:299–302. https://doi.org/10.1016/j.diagmicrobio.2012.06.024

    Article  CAS  PubMed  Google Scholar 

  87. Warren YA, Tyrrell KL, Citron DM, Goldstein EJC (2006) Clostridium aldenense sp. nov. and Clostridium citroniae sp. nov. isolated from human clinical infections. J Clin Microbiol 44:2416–22. https://doi.org/10.1128/JCM.00116-06

    Article  CAS  PubMed Central  Google Scholar 

  88. Rafii F, Park M, Wynne R (2005) Evidence for active drug efflux in fluoroquinolone resistance in Clostridium hathewayi. Chemotherapy 51:256–62. https://doi.org/10.1159/000087253

    Article  CAS  Google Scholar 

  89. Toth M, Stewart NK, Smith C, Vakulenko SB (2018) Intrinsic class D ß-lactamases of Clostridium difficile. mBio 9:1803–18. https://doi.org/10.1128/mBio.01803-18

    Article  Google Scholar 

  90. Alexander CJ, Citron DM, Brazier JS, Goldstein EJC (1995) Identification and antimicrobial resistance patterns of clinical Isolates of Clostridium clostridioforme, Clostridium innocuum, and Clostridium ramosum compared with those of clinical isolates of Clostridium perfringens. J Clin Microbiol 33:3209–3215. https://doi.org/10.1128/jcm.33.12.3209-3215.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Citron DM, Merriam CV, Tyrrell KL, Warren YA, Fernandez H, Goldstein EJ (2003) In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria. Antimicrob Agents Chemother 47:2334–2338. https://doi.org/10.1128/AAC.47.7.2334-2338.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Goldstein EJC, Merriam CV, Citron DM (2020) In vitro activity of tedizolid compared to linezolid and five other antimicrobial agents against 332 anaerobic isolates, including Bacteroides fragilis group, Prevotella, Porphyromonas, and Veillonella species. Antimicrob Agents Chemother 64:1088–1120. https://doi.org/10.1128/AAC.01088-20

    Article  Google Scholar 

  93. Mory F, Lozniewski A, David V, Carlier JP, Dubreuil L, Leclercq R (1998) Low-level vancomycin resistance in Clostridium innocuum. J Clin Microbiol 36:1767–1768. https://doi.org/10.1128/JCM.36.6.1767-1768.1998

    Article  CAS  PubMed Central  Google Scholar 

  94. Goldstein EJ, Citron DM, Merriam CV, Warren YA, Tyrrell KL, Fernandez HT (2004) In vitro activities of the new semisynthetic glycopeptide telavancin (TD-6424), vancomycin, daptomycin, linezolid, and four comparator agents against anaerobic gram-positive species and Corynebacterium spp.. Antimicrob Agents Chemother 48:2149–2152. https://doi.org/10.1128/AAC.48.6.2149-2152.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Marvaud JC, Mory F, Lambert T (2011) Clostridium clostridioforme and Atopobium minutum clinical isolates with VanB-type resistance in France. J Clin Microbiol 49:3436–3438. https://doi.org/10.1128/JCM.00308-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhou Y, Li J, Schwarz S, Zhang S, Tao J, Fan R, Walsh TR, Wu C, Wang Y (2020) Mobile oxazolidinone/phenicol resistance gene optrA in chicken Clostridium perfringens. J Antimicrob Chemother 75:3067–3069. https://doi.org/10.1093/jac/dkaa236

    Article  CAS  PubMed  Google Scholar 

  97. Zhang S, Liu P, Wang Y, Shen Z, Wang S (2021) Multiresistance gene cfr(C) in Clostridium perfringens of cattle origin from China. J Antimicrob Chemother 76:3310–3312. https://doi.org/10.1093/jac/dkab339

    Article  CAS  PubMed  Google Scholar 

  98. Stojković V, Ulate MF, Hidalgo-Villeda F, Aguilar E, Monge-Cascante C, Pizarro-Guajardo M, Tsai K, Tzoc E, Camorlinga M, Paredes-Sabja D, Quesada-Gómez C, Fujimori DG, Rodríguez C (2019) Cfr(B), cfr(C), and a new cfr-like gene, cfr(E), in Clostridium difficile strains recovered across Latin America. Antimicrob Agents Chemother 20(64):01074–01119. https://doi.org/10.1128/AAC.01074-19

    Article  Google Scholar 

  99. Eubank TA, Gonzales-Luna AJ, Hurdle JG, Garey KW (2022) Genetic mechanisms of vancomycin resistance in Clostridioides difficile: a systematic review. Antibiotics (Basel) 11:258. https://doi.org/10.3390/antibiotics11020258

    Article  CAS  PubMed Central  Google Scholar 

  100. Peng Z, Jin D, Kim HB, Stratton CW, Wu B, Tang Y-W, Sun X (2017) Update on antimicrobial resistance in Clostridium difficile: resistance mechanisms and antimicrobial susceptibility testing. J Clin Microbiol 55:1998–2008. https://doi.org/10.1128/JCM.02250-16

    Article  CAS  PubMed Central  Google Scholar 

  101. Darkoh C, Keita K, Odo C, Oyaro M, Brown EL, Arias CA et al (2022) Emergence of clinical Clostridioides difficile isolates with decreased susceptibility to vancomycin. Clin Infect Dis 74:120–126. https://doi.org/10.1093/cid/ciaa912

    Article  CAS  PubMed  Google Scholar 

  102. Goldstein EJC, Citron DM, Sears P et al (2011) Comparative susceptibilities to fidaxomicin (OPT-80) of isolates collected at baseline, recurrence, and failure from patients in two phase III trials of fidaxomicin against Clostridium difficile infection. Antimicrob Agents Chemother 55:5194–5199. https://doi.org/10.1128/AAC.00625

    Article  CAS  PubMed Central  Google Scholar 

  103. Schwanbeck J, Riedel T, Laukien F et al (2019) Characterization of a clinical Clostridioides difficile isolate with markedly reduced fidaxomicin susceptibility and a V1143D mutation in rpoB. J Antimicrob Chemother 74:6–10. https://doi.org/10.1093/jac/dky375

    Article  CAS  Google Scholar 

  104. Marchandin H, Anjou C, Poulen G, Freeman J, Wilcox M, Jean-Pierre H, Barbut F (2023) In vivo emergence of a still uncommon resistance to fidaxomicin in the urgent antimicrobial resistance threat Clostridioides difficile. J Antimicrob Chemother 78:1992–1999. https://doi.org/10.1093/jac/dkad194

    Article  CAS  Google Scholar 

  105. Veloo AC, Welling GW, Degener JE (2011) Antimicrobial susceptibility of clinically relevant Gram-positive anaerobic cocci collected over a three-year period in the Netherlands. Antimicrob Agents Chemother 55:1199–203. https://doi.org/10.1128/AAC.01771-09

    Article  CAS  PubMed  Google Scholar 

  106. Shilnikova II, Dmitrieva NV (2015) Evaluation of antibiotic susceptibility of Gram- positive anaerobic cocci isolated from cancer patients of the N. N. Blokhin Russian Cancer Research Center. J Pathog 2015:648134. https://doi.org/10.1155/2015/648134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Guérin F, Dejoies L, Degand N, Guet-Revillet H, Janvier F, Corvec S, et al. On Behalf of the Gmc Study Group (2021) In vitro antimicrobial susceptibility profiles of Gram-positive anaerobic cocci responsible for human invasive infections. Microorganisms. 9:1665. https://doi.org/10.3390/microorganisms9081665

  108. Maraki S, Mavromanolaki VE, Stafylaki D, Kasimati A (2020) Antimicrobial susceptibility patterns of clinically significant Gram-positive anaerobic bacteria in a Greek tertiary-care hospital, 2017–2019. Anaerobe 64:102245. https://doi.org/10.1016/j.anaerobe.2020.102245

    Article  CAS  PubMed  Google Scholar 

  109. Akgül Ö, Söyletir G, Toprak NÜ (2020) Antimicrobial susceptibility of pathogenic Gram-positive anaerobic cocci: data of a university hospital in Turkey. Mikrobiyol Bul 54(404):417. https://doi.org/10.5578/mb.69556

    Article  Google Scholar 

  110. Shetty S, Anegundi R, Shenoy PA, Vishwanath S (2023) Understanding antimicrobial susceptibility profile of Finegoldia magna: an insight to an untrodden path. Ann Clin Microbiol Antimicrobials 22:30. https://doi.org/10.1186/s12941-023-00583-1

    Article  CAS  Google Scholar 

  111. Tan TY, Ng LSY, Kwang LL, Rao S, Eng LC (2017) Clinical characteristics and antimicrobial susceptibilities of anaerobic bacteremia in an acute care hospital. Anaerobe 43:69–74. https://doi.org/10.1016/j.anaerobe.2016.11.009

    Article  PubMed  Google Scholar 

  112. Cobo F, Granger JR, Sampedro A, Navarro-Mari JM (2017) Infected breast cyst due to Prevotella buccae resistant to metronidazole. Anaerobe 48:177–178. https://doi.org/10.1016/j.anaerobe.2017.08.015

    Article  PubMed  Google Scholar 

  113. Veloo ACM, Chlebowicz M, Winter HLJ, Bathoorn D, Rossen JWA (2018) Three metronidazole-resistant Prevotella bivia strains harbour a mobile element, encoding a novel nim gene, nimK, and an efflux small MDR transporter. J Antimicrob Chemother 73:2687–2690. https://doi.org/10.1093/jac/dky236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Alauzet C, Mory F, Teyssier C, Hallage H, Carlier JP, Grollier G, Lozniewski A (2010) Metronidazole resistance in Prevotella spp. and description of a new Nim gene in Prevotella baroniae. Antimicrob Agents Chemother 54:60–4. https://doi.org/10.1128/AAC.01003-09

    Article  CAS  PubMed  Google Scholar 

  115. Mory F, Carlier JP, Alauzet C, Thouvenin M, Schuhmacher H, Lozniewski A (2005) Bacteremia caused by a metronidazole-resistant Prevotella. J Clin Microbiol 43:5380–3. https://doi.org/10.1128/JCM.43.10.5380-5383.2005

    Article  PubMed  PubMed Central  Google Scholar 

  116. Piriz S, Vadillo S, Quesada A, Criado J, Cerrato R, Ayala J (2004) Relationship between penicillin-binding protein patterns and ß lactamases in clinical isolates of Bacteroides fragilis with different susceptibility to ß-lactams antibiotic. J Med Microbiol 53:213–21. https://doi.org/10.1099/jmm.0.05409-0

    Article  CAS  PubMed  Google Scholar 

  117. Rogers MB, Parker AC, Smith CJ (1993) Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A beta-lactamases. Antimicrob Agents Chemother 37:2391–2400. https://doi.org/10.1128/AAC.37.11.2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rogers MB, Bennett TK, Payne CM, Smith CJ (1994) Insertional activation of cepA leads to high-level beta-lactamase expression in Bacteroides fragilis clinical isolates. J Bacteriol 176:4376–84. https://doi.org/10.1128/jb.176.14.4376-4384.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sóki J, Keszőcze A, Nagy I, Burián K, Nagy E (2021) An update on ampicillin resistance and β-lactamase genes of Bacteroides spp. J Med Microbiol 70:001393. https://doi.org/10.1099/jmm.0.001393

    Article  CAS  Google Scholar 

  120. Odou MF, Singer E, Romond MB, Dubreuil L (1988) Isolation and characterization of a porin-like protein of 45 kilodaltons from Bacteroides fragilis. FEMS (Microbiol Soc) Microbiol Lett 166(347):54

    Google Scholar 

  121. Odou MF, Singer E, Dubreuil L (2001) Description of complex forms of a porin in Bacteroides fragilis and possible implication of this protein in antibiotic resistance. Anaerobe 7(219):25. https://doi.org/10.1006/anae.2001.0385

    Article  Google Scholar 

  122. Behra-Miellet J, Calvet L, Dubreuil L (2004) A Bacteroides thetaiotamicron porin that could take part in resistance to beta-lactams. Int J Antimicrob Agents 24(135):43. https://doi.org/10.1016/j.ijantimicag.2004.01.008

    Article  CAS  Google Scholar 

  123. Yekani M, Rezaee MA, Beheshtirouy S, Baghi HB, Bazmani A, Farzinazar A, Memar MY, Sóki J (2022) Carbapenem resistance in Bacteroides fragilis: a review of molecular mechanisms. Anaerobe 76:102606. https://doi.org/10.1016/j.anaerobe.2022.102606

    Article  CAS  PubMed  Google Scholar 

  124. Wallace MJ, Jean S, Wallace MA, Burnham CD, Dantas G (2022) Comparative genomics of Bacteroides fragilis group isolates reveals species-dependent resistance mechanisms and validates clinical tools for resistance prediction. mBio 13:03603–21. https://doi.org/10.1128/mbio.03603-21

    Article  Google Scholar 

  125. Sydenham TV, Overballe-Petersen S, Hasman H, Wexler H, Kemp M, Justesen US (2019) Complete hybrid genome assembly of clinical multidrug-resistant Bacteroides fragilis isolates enables comprehensive identification of antimicrobial-resistance genes and plasmids. Microb Genom 5:000312. https://doi.org/10.1099/mgen.0.000312

    Article  CAS  Google Scholar 

  126. Gutacker M, Valsangiacomo C, Piffaretti JC (2000) Identification of two genetic groups in Bacteroides fragilis by multilocus enzyme electrophoresis: distribution of antibiotic resistance (cfiA, cepA) and enterotoxin (bft) encoding genes. Microbiol 146:1241–1254. https://doi.org/10.1099/00221287-146-5-1241

    Article  CAS  Google Scholar 

  127. Sóki J, Edwards R, Hedberg M, Fang H, Nagy E, Nord CE, on behalf of the ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria (2006) Examination of cfiA-mediated carbapenem resistance in Bacteroides fragilis strains from a European antibiotic susceptibility survey. Int J Antimicrob Agents 28:497–502. https://doi.org/10.1016/j.ijantimicag.2006.07.021

    Article  CAS  Google Scholar 

  128. Jeverica S, Sóki J, Premru MM, Nagy E, Papst L (2019) High prevalence of division II (cfiA positive) isolates among blood stream Bacteroides fragilis in Slovenia as determined by MALDI-TOF MS. Anaerobe 58:30–34. https://doi.org/10.1016/j.anaerobe.2019.01.011

    Article  CAS  Google Scholar 

  129. Podglajen I, Breuil J, Bordon F, Gutmann L, Collatz E (1992) A silent carbapenemase gene in strains of Bacteroides fragilis can be expressed after a one-step mutation. FEMS Microbiol Lett 91:21–30. https://doi.org/10.1016/0378-1097(92)90557-5

    Article  CAS  Google Scholar 

  130. Schwensen SA, Acar Z, Sydenham TV, Johansson ÅC, Justesen US (2017) Phenotypic detection of the cfiA metallo-β-lactamase in Bacteroides fragilis with the meropenem-EDTA double-ended E-test and the ROSCO KPC/MBL confirm kit. J Antimicrob Chemother 72:437–440. https://doi.org/10.1093/jac/dkw436

    Article  CAS  PubMed  Google Scholar 

  131. Nagy E, Becker S, Sóki J, Urbán E, Kostrzewa M (2011) Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol 60:1584–1590. https://doi.org/10.1099/jmm.0.031336-0

    Article  CAS  PubMed  Google Scholar 

  132. Cordovana M, Kostrzewa M, Sóki J, Witt E, Ambretti S, Pranada AB (2018) Bacteroides fragilis: a whole MALDI-based workflow from identification to confirmation of carbapenemase production for routine laboratories. Anaerobe 54:246–253. https://doi.org/10.1016/j.anaerobe.2018.04.004

    Article  CAS  Google Scholar 

  133. Wang Y, Guo B, Gao X, Wen J, Wang Z, Wang J (2023) High prevalence of cfiA positive Bacteroides fragilis isolates collected at a teaching hospital in Hohhot, China. Anerobe 79:102691. https://doi.org/10.1016/j.anaerobe.2022.102691

    Article  CAS  Google Scholar 

  134. Kaeuffer C, Tiffany RT, Driancourt L, Romain B, Ruch Y, Jaulhac B, Boyer HM (2021) First case of bacteraemia due to carbapenem-resistant Bacteroides faecis. Antibiotics (Basel) 10:319. https://doi.org/10.3390/antibiotics10030319

    Article  CAS  Google Scholar 

  135. Hurlbut S, Cuchural GJ, Tally FP (1990) Imipenem resistance in Bacteroides distasonis mediated by a novel ß-lactamase. Antimicrob Agents Chemother 34:117–120. https://doi.org/10.1128/AAC.34.1.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sadarangani SP, Cunningham SA, Jeraldo PR, Wilson JW, Khare R, Patel R (2015) Metronidazole- and carbapenem-resistant Bacteroides thetaiotaomicron isolated in Rochester, Minnesota, in 2014. Antimicrob Agents Chemother 59:4157–4161. https://doi.org/10.1128/AAC.00677-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Citron DM, Tyrrell KL, Merriam V, Goldstein EJ (2011) In vitro activity of ceftazidime-NXL104 against 396 strains of beta-lactamase-producing anaerobes. Antimicrob Agents Chemother 55:3616–3620. https://doi.org/10.1128/AAC.01682-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dubreuil LJ, Mahieux S, Neut C, Miossec C, Pace J (2012) Anti-anaerobic activity of a new ß-lactamase inhibitor NXL104 in combination with ß-lactams and metronidazole. Int J Antimicrob Agents 39(500):4. https://doi.org/10.1016/j.ijantimicag.2012.02.013

    Article  CAS  Google Scholar 

  139. Syndman DR, Jacobus NV, McDermott LA (2016) In vitro evaluation of the activity of imipenem-relebactam against 451 recent clinical isolates of Bacteroides group and related species. Antimicrob Agents Chemother 60:6393–6397. https://doi.org/10.1128/AAC.01125-16

    Article  CAS  Google Scholar 

  140. Goldstein EJC, Citron DM, Tyrrell KL, Leoncio E, Merriama CV (2018) Comparative in vitro activities of relebactam, imipenem, the combination of the two, and six comparator antimicrobial agents against 432 strains of anaerobic organisms, including imipenem-resistant strains. Antimicrob Agents Chemother 62:01992–02017. https://doi.org/10.1128/AAC.01992-17

    Article  Google Scholar 

  141. Lomovskaya O, Tsivkovski R, Nelson K, Rubio-Aparicio D, Sun D, Totrov M, Dudleya MN (2020) Spectrum of beta-lactamase inhibition by the cyclic boronate QPX7728, an ultrabroad-spectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases: enhancement of activity of multiple antibiotics against isogenic strains expressing single beta-lactamases. Antimicrob Agents Chemother 64:212–220. https://doi.org/10.1128/AAC.00212-20

    Article  Google Scholar 

  142. Ghotasou R, Baghi HB, Alizadeh N, Yekani M, Arbabi S, Memar MY (2018) Mechanisms of Bacteroides fragilis resistance to metronidazole. Infect Genet Evol 64:156–163. https://doi.org/10.1016/j.meegid.2018.06.020

    Article  CAS  Google Scholar 

  143. Baaity Z, Jamal W, Rotimi VO, Burian K, Leitsch D, Somogyvari F, Nagy E, Sóki J (2021) Molecular characterization of metronidazole resistant Bacteroides strains from Kuwait. Anaerobe 69:102357. https://doi.org/10.1016/j.anaerobe.2021.102357

    Article  CAS  PubMed  Google Scholar 

  144. Otte E, Nielsen HL, Hasman H, Fuglsang-Damgaard D (2017) First report of metronidazole resistant, nimD-positive, Bacteroides stercoris isolated from an abdominal abscess in a 70-year-old woman. Anaerobe 43:91–93. https://doi.org/10.1016/j.anaerobe.2016.12.01

    Article  PubMed  Google Scholar 

  145. Copsey-Mawe S, Hughes H, Scotford S, Anderson B, Davis C, Perry MD, Morris TE (2021) UK Bacteroides species surveillance survey: change in antimicrobial resistance over 16 year (2000–2916). Anaerobe 72:102447. https://doi.org/10.1016/j.anaerobe.2021.102447

    Article  CAS  Google Scholar 

  146. Imwattana K, Kiratisin P, Riley TV (2022) Antimicrobial-resistant Bacteroides fragilis in Thailand and their inhibitory effect in vitro on the growth of Clostridioides difficile. Anaerobe 73:102505. https://doi.org/10.1016/j.anaerobe.2021.102505

    Article  CAS  PubMed  Google Scholar 

  147. Hartmeyer GN, Sóki J, Nagy E, Justesen US (2012) Multidrug-resistant Bacteroides fragilis group on the rise in Europe? J Med Microbiol 61:1784–1788. https://doi.org/10.1099/jmm.0.049825-0

    Article  CAS  PubMed  Google Scholar 

  148. Sóki J, Hedberg M, Patrick S, Bálint B, Herczeg R, Nagy I, Hecht DW, Nagy E, Urbán E (2016) Emergence and evolution of an international cluster of MDR Bacteroides fragilis isolates. J Antimicrob Chemother 71:2441–2448. https://doi.org/10.1093/jac/dkw175

    Article  CAS  PubMed  Google Scholar 

  149. Boyanova L, Markovska R, Ivan MI (2019) Multidrug resistance in anaerobes. Future Microbiol 14:1055–1064. https://doi.org/10.2217/fmb-2019-0132

    Article  CAS  Google Scholar 

  150. Rong SMM, Rodloff AC, Stingu CZ (2021) Diversity of antimicrobial resistance genes in Bacteroides and Parabacteroides strains isolated in Germany. J Global Antimicrob resistance 24:328–334. https://doi.org/10.1016/j.jgar.2021.01.007

    Article  CAS  Google Scholar 

  151. Behra-Miellet J, Calvet L, Dubreuil L (2003) Activity of linezolid against anaerobic bacteria. Int J Antimicrob Agents 22:28–34. https://doi.org/10.1016/s0924-8579(03)00087-6

    Article  CAS  PubMed  Google Scholar 

  152. Wareham DW, Wilks M, Ahmed D, Brazier JS, Millar M (2005) Anaerobic sepsis due to multidrug-resistant Bacteroides fragilis: microbiological cure and clinical response with linezolid therapy. Clin Infect Dis 40:67–68. https://doi.org/10.1086/428623

    Article  Google Scholar 

  153. Goldstein EJ, Citron DM, Tyrrell KL, Leoncio ES, Merriam CV (2017) The underappreciated in vitro activity of tedizolid against Bacteroides fragilis species, including strains resistant to metronidazole and carbapenems. Anaerobe 43:1–3. https://doi.org/10.1016/j.anaerobe.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  154. Ghotaslou R, Yekani M, Memar MY (2018) The role of efflux pumps in Bacteroides fragilis resistance to antibiotics. Microbiol Res 210:1–5. https://doi.org/10.1016/j.micres.2018.02.007

    Article  CAS  Google Scholar 

  155. Wexler HM (2012) Pump it up: occurrence and regulation of multi-drug efflux pumps5in Bacteroides fragilis. Anaerobe 18:200–208. https://doi.org/10.1016/j.anaerobe.2011.12.017

    Article  CAS  PubMed  Google Scholar 

  156. Pumbwe L, Glass D, Wexler HM (2006) Efflux pump overexpression in multiple-antibiotic-resistant mutants of Bacteroides fragilis. Antimicrob Agents Chemother 2006(50):3150–3153. https://doi.org/10.1128/AAC.00141-06

    Article  CAS  Google Scholar 

  157. Miyamae S, Ueda O, Yoshimura F, Hwang J, Tanaka Y, Nikaido H (2001) A MATE family multidrug efflux transporter pumps out fluoroquinolones in Bacteroides thetaiotaomicron. Antimicrob Agents Chemother 45:3341–3346. https://doi.org/10.1128/AAC.00141-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Boiten KE, Kuijper EJ, Schuele L, van Prehn J, Bode LGM, Maat I, van Asten SAV, Notermans DW, Rossen JWA, Veloo ACM (2023) Characterization of mobile genetic elements in multidrug-resistant Bacteroides fragilis isolates from different hospitals in the Netherlands. Anaerobe 81:102722. https://doi.org/10.1016/j.anaerobe.2023.102722

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This review was written by Dr. Dubreuil (sole author).

Corresponding author

Correspondence to Luc J. Dubreuil.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Never refrigerate samples.

• The reference method for MIC determination is agar dilution.

• Disc diffusion methods (EUCAST and CA-SFM) have been revisited.

• Do not ignore squatter colonies in the zone of inhibition which often indicate hetero-resistance.

• Clostridia are not always susceptible to metronidazole, linezolid, and daptomycin.

• Avoid any confusion between B. fragilis cfiA+ and cfiA− strains.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubreuil, L.J. Fifty years devoted to anaerobes: historical, lessons, and highlights. Eur J Clin Microbiol Infect Dis 43, 1–15 (2024). https://doi.org/10.1007/s10096-023-04708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-023-04708-4

Keywords

Navigation