Skip to main content
Log in

Marked neuropsychiatric involvement and dysmorphic features in nemaline myopathy

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Inherited nemaline myopathy is one of the most common congenital myopathies. This genetically heterogeneous disease is defined by the presence of nemaline bodies in muscle biopsy. The phenotypic spectrum is wide and cognitive involvement has been reported, although not extensively evaluated.

Methods

We report two nemaline myopathy patients presenting pronounced central nervous system involvement leading to functional compromise and novel facial and skeletal dysmorphic findings, possibly expanding the disease phenotype.

Results

One patient had two likely pathogenic NEB variants, c.2943G > A and c.8889 + 1G > A, and presented cognitive impairment and dysmorphic features, and the other had one pathogenic variant in ACTA1, c.169G > C (p.Gly57Arg), presenting autism spectrum disorder and corpus callosum atrophy. Both patients had severe cognitive involvement despite milder motor dysfunction.

Conclusion

We raise the need for further studies regarding the role of thin filament proteins in the central nervous system and for a systematic cognitive assessment of congenital myopathy patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All available data was included in the manuscript and associated tables and figures.

References

  1. Wallgren-Pettersson C, Sewry CA, Nowak KJ, Laing NG (2011) Nemaline myopathies. Seminars Paediatr Neurol 18(4):230–238. https://doi.org/10.1016/j.spen.2011.10.004

    Article  Google Scholar 

  2. Amburgey K, Acker M, Saeed S, Amin R, Beggs AH, Bönnemann CG et al (2021) A cross-sectional study of nemaline myopathy. Neurol 96(10):e1425–e1436. https://doi.org/10.1212/WNL.0000000000011458

    Article  CAS  Google Scholar 

  3. Moreno CAM, Abath Neto O, Donkervoort S, Hu Y, Reed UC, Oliveira ASB et al (2017) Clinical and histologic findings in ACTA1-related nemaline myopathy: case series and review of the literature. Pediatr Neurol 75:11–16. https://doi.org/10.1016/j.pediatrneurol.2017.04.002

    Article  PubMed  Google Scholar 

  4. Ryan MM, Schnell C, Strickland CD, Shield LK, Morgan G, Iannaccone ST et al (2001) Nemaline myopathy: a clinical study of 143 cases. Ann Neurol 50(3):312–320. https://doi.org/10.1002/ana.1080

    Article  CAS  PubMed  Google Scholar 

  5. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164–e164. https://doi.org/10.1093/nar/gkq603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A et al (2016) The ensemble variant effect predictor. Genome Biol 17(122):1–14. https://doi.org/10.1186/s13059-016-0974-4

    Article  CAS  Google Scholar 

  7. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I et al (2005) The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  8. Pike NA, Poulsen MK, Woo MA (2017) Validity of the Montreal cognitive assessment screener in adolescents and young adults with and without congenital heart disease. Nurs Res 66(3):222–230. https://doi.org/10.1097/NNR.0000000000000192

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schopler E, Reichler RJ, DeVellis RF, Daly K (1980) Toward objective classification of childhood autism: childhood autism rating scale (CARS). J Autism Dev Disord 10(1):91–103. https://doi.org/10.1007/BF02408436

    Article  CAS  PubMed  Google Scholar 

  10. Lehtokari VL, Kiiski K, Sandaradura SA, Laporte J, Repo P, Frey JA et al (2014) Mutation update: the spectra of nebulin variants and associated myopathies. Hum Mutat 35(12):1418–1926. https://doi.org/10.1002/humu.22693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Banihani R, Smile S, Yoon G, Dupuis A, Mosleh M, Snider A et al (2015) Cognitive and neurobehavioral profile in boys with duchenne muscular dystrophy. J Child Neurol 30(11):1472–1482. https://doi.org/10.1177/0883073815570154

    Article  PubMed  Google Scholar 

  12. Douniol M, Jacquette A, Cohen D, Bodeau N, Rachidi L, Angeard N et al (2012) Psychiatric and cognitive phenotype of childhood myotonic dystrophy type 1. Dev Med Child Neurol 54(10):905–911. https://doi.org/10.1111/j.1469-8749.2012.04379.x

    Article  PubMed  Google Scholar 

  13. Brun BN, Mockler SRH, Laubscher KM, Stephan CM, Wallace AM, Collison JA, et al (2017) Comparison of brain MRI findings with language and motor function in the dystroglycanopathies. Neurology 88(7):623–629. https://doi.org/10.1212/WNL.0000000000003609

  14. Specht S, Straub V (2021) Intellectual disability in paediatric patients with genetic muscle diseases. Neuromuscul Disord 31(10):988–997. https://doi.org/10.1016/j.nmd.2021.08.012

    Article  PubMed  Google Scholar 

  15. Wallgren-Pettersson C (1989) Congenital nemaline myopathy: a clinical follow-up of twelve patients. J Neurol Sci 89(1):1–14. https://doi.org/10.1016/0022-510x(89)90002-6

    Article  CAS  PubMed  Google Scholar 

  16. Moreno CAM, Artilheiro MC, Fonseca ATQSM, Camelo CG, de Medeiros GC, Sassi FC et al (2023) Clinical manifestation of nebulin-associated nemaline myopathy. Neurol Genet 9(1):1–10. https://doi.org/10.1212/NXG.0000000000200056

  17. Saito Y, Komaki H, Hattori A, Takeuchi F, Sasaki M, Kawabata K et al (2011) Extramuscular manifestations in children with severe congenital myopathy due to ACTA1 gene mutations. Neuromuscul Disord 21(7):489–493. https://doi.org/10.1016/j.nmd.2011.03.004

    Article  PubMed  Google Scholar 

  18. Shmueli O, Horn-Saban S, Chalifa-Caspi V, Shmoish M, Ophir R, Benjamin-Rodrig H et al (2003) GeneNote: whole genome expression profiles in normal human tissues C R Biol 326(10,11):1067–1072. https://doi.org/10.1016/j.crvi.2003.09.012

  19. Kalajzic I, Kalajzic Z, Wang L, Jiang X, Lamothe K, San Miguel SM et al (2007) Pericyte/myoblast phenotype of osteoprogenitor cell. J Musculoskelet Neuronal Interact 7(4):320–322

    CAS  PubMed  Google Scholar 

  20. Chandra M, Mamidi R, Ford S, Hidalgo C, Witt C, Ottenheijm C et al (2009) Nebulin alters cross-bridge cycling kinetics and increases thin filament activation: a novel mechanism for increasing tension and reducing tension cost. J Biol Chem 284(45):30889–30896. https://doi.org/10.1074/jbc.M109.049718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Laitila J, Hanif M, Paetau A, Hujanen S, Keto J, Somervuo P et al (2012) Expression of multiple nebulin isoforms in human skeletal muscle and brain. Muscle Nerve 46(5):730–777

    Article  CAS  PubMed  Google Scholar 

  22. Blokhuis AM, Deenen JCW, Voermans NC, van Engelen BGM, Kievit W, Groothuis JT (2021) The socioeconomic burden of facioscapulohumeral muscular dystrophy. J Neurol 268(12):4778–4788. https://doi.org/10.1007/s00415-021-10591-w

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB et al (2014) Most genetic risk for autism resides with common variation. Nat Genet 46(8):881–885. https://doi.org/10.1038/ng.3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Astrea G, Battini R, Lenzi S, Frosini S, Bonetti S, Moretti E et al (2016) Learning disabilities in neuromuscular disorders: a springboard for adult life. Acta Myol 35(2):90–95

    PubMed  PubMed Central  Google Scholar 

  25. D’Angelo MG, Bresolin N (2006) Cognitive impairment in neuromuscular disorders. Muscle Nerve 34(1):16–33. https://doi.org/10.1002/mus.20535

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study received funding from the Brazilian National Council for Scientific and Technological Development (CNPq) through the author Pedro Braga Neto as research grant funding (productivity scholarship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Ribeiro Nóbrega.

Ethics declarations

Ethics approval

The research has been approved by the local ethics committee under the number 5.952.628.

Consent for publication

The patients have signed an informed consent form for publication of clinical data.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nóbrega, P.R., de Brito de Souza, J.L., Maurício, R.B. et al. Marked neuropsychiatric involvement and dysmorphic features in nemaline myopathy. Neurol Sci 45, 1225–1231 (2024). https://doi.org/10.1007/s10072-023-07128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-07128-6

Keywords

Navigation