Skip to main content

Advertisement

Log in

Nanoparticles approaches in neurodegenerative diseases diagnosis and treatment

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The World Health Organization (WHO) has declared that neurodegenerative diseases will be the biggest health issues of the twenty-first century. Among these, Alzheimer’s and Parkinson’s diseases can be considered as the most acute incurable neurological diseases. Researchers are studying and developing a new treatment approach that uses nanotechnology to diagnosis and treatment neurodegenerative diseases. This treatment strategy will be used to regress neurodegenerative diseases such as Alzheimer’s disease. Alzheimer’s disease (AD) is one of the most common forms of reduced brain function, which causes many devastating complications. Current neurodegenerative diseases treatment protocols only help to treat symptoms nevertheless with nanotechnology approaches, can regress nerve cells apoptosis, reduce inflammation, and improve brain drug delivery. In this paper, new nanotechnology methods such as nanobodies, nano-antibodies, and lipid nanoparticles have been investigated. Correspondingly blood-brain barrier drug delivery improvement methods have been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Noble W, Burns MP (2010) Challenges in neurodegeneration research. Front Psychiatr 1:7

    Article  Google Scholar 

  2. Spuch C, Saida O, Navarro C (2012) Advances in the treatment of neurodegenerative disorders employing nanoparticles. Recent Patents Drug Deliv Formul 6(1):2–18

    Article  CAS  Google Scholar 

  3. Abbasi-Oshaghi E, Mirzaei F, Mirzaei A (2018) Effects of ZnO nanoparticles on intestinal function and structure in normal/high fat diet-fed rats and Caco-2 cells. Nanomedicine. 13(21):2791–2816

    Article  CAS  PubMed  Google Scholar 

  4. Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Rahbar Saadat Y, Zununi Vahed S, Samiei M, Ardalan M, Rameshrad M, Ahmadian E, Cucchiarini M (2020) The use of nanomaterials in tissue engineering for cartilage regeneration; current approaches and future perspectives. Int J Mol Sci 21(2):536

    Article  CAS  PubMed Central  Google Scholar 

  5. Schmid G (2011) Nanoparticles: from theory to application. John Wiley & Sons

  6. Caracciolo G, Vali H, Moore A, Mahmoudi M (2019) Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today 27:6–10

    Article  Google Scholar 

  7. Tierney T, Bodnár K, Rasmuson Å, Hudson S (2017) Carrier particle design for stabilization and isolation of drug nanoparticles. Int J Pharm 518(1-2):111–118

    Article  CAS  PubMed  Google Scholar 

  8. Amirrasouli H, Asefy Z, Taghikhani M (2011) Study of serum cystatin C as a reliable marker for metabolic syndrome. J Diab Metab Disord 10:6

    Google Scholar 

  9. Ley K (2003) The role of selectins in inflammation and disease. Trends Mol Med 9(6):263–268

    Article  CAS  PubMed  Google Scholar 

  10. Asefy Z, Mirinejad M, Amirrasooli H, Tagikhani M (2014) Assessing validity of serum cystatin C for predicting metabolic syndrome. Pak J Biol Sci 17(4):582–585

    Article  CAS  PubMed  Google Scholar 

  11. Ospelt C, Gay S (2010) TLRs and chronic inflammation. Int J Biochem Cell Biol 42(4):495–505

    Article  CAS  PubMed  Google Scholar 

  12. Villapol S (2018) Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol Neurobiol 38(1):121–132

    Article  CAS  PubMed  Google Scholar 

  13. Clark AK, Gentry C, Bradbury EJ, McMahon SB, Malcangio M (2007) Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain 11(2):223–230

    Article  PubMed  Google Scholar 

  14. Parisi V. (ed) (2003) Correlation between morphological and functional retinal impairment in patients affected by ocular hypertension, glaucoma, demyelinating optic neuritis and Alzheimer’s disease. Seminars in ophthalmology. Taylor & Francis

  15. Šimić G, Babić Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, de Silva R, di Giovanni G, Wischik C, Hof P (2016) Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules. 6(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  16. Enache TA, Oliveira-Brett AM (2017) Alzheimer’s disease amyloid beta peptides in vitro electrochemical oxidation. Bioelectrochemistry. 114:13–23

    Article  CAS  PubMed  Google Scholar 

  17. Stern Y (2012) Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 11(11):1006–1012

    Article  PubMed  PubMed Central  Google Scholar 

  18. Readnower RD, Chavko M, Adeeb S, Conroy MD, Pauly JR, McCarron RM et al (2010) Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J Neurosci Res 88(16):3530–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Denieffe S, Kelly RJ, McDonald C, Lyons A, Lynch MA (2013) Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells. Brain Behav Immun 34:86–97

    Article  CAS  PubMed  Google Scholar 

  20. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194

    Article  CAS  PubMed  Google Scholar 

  21. Matias D, Dubois LG, Pontes B, Rosário L, Ferrer VP, Balça-Silva J, Fonseca ACC, Macharia LW, Romão L, e Spohr TCLS, Chimelli L, Filho PN, Lopes MC, Abreu JG, Lima FRS, Moura-Neto V (2019) GBM-derived Wnt3a induces M2-like phenotype in microglial cells through Wnt/β-catenin signaling. Mol Neurobiol 56(2):1517–1530

    Article  CAS  PubMed  Google Scholar 

  22. Song M, Liu T, Shi C, Zhang X, Chen X (2016) Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 10(1):633–647

    Article  CAS  PubMed  Google Scholar 

  23. Sushnitha M, Evangelopoulos M, Tasciotti E, Taraballi F (2020) Cell membrane-based biomimetic nanoparticles and the immune system: immunomodulatory interactions to therapeutic applications. Front Bioeng Biotechnol 8

  24. Alkhalifa H, Alshebber E, Taurin S (2021) Regenerative nanomedicine applications for neurodegenerative diseases of central nervous system. Theory and Applications of Nonparenteral Nanomedicines: Elsevier, pp 259-87

  25. Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, Corbo C, Tasciotti E (2017) Bio-inspired engineering of cell-and virus-like nanoparticles for drug delivery. Biomaterials. 147:155–168

    Article  CAS  PubMed  Google Scholar 

  26. Cui W, Fu W, Lin Y, Zhang T (2021) Application of nanomaterials in neurodegenerative diseases. Curr Stem Cell Res Ther 16(1):83–94

    CAS  PubMed  Google Scholar 

  27. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  PubMed  Google Scholar 

  28. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101

    Article  CAS  PubMed  Google Scholar 

  29. Sheikpranbabu S, Kalishwaralal K, Venkataraman D, Eom SH, Park J, Gurunathan S (2009) Silver nanoparticles inhibit VEGF-and IL-1β-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J Nanobiotechnol 7(1):8

    Article  Google Scholar 

  30. Govindappa M, Hemashekhar B, Arthikala M-K, Rai VR, Ramachandra Y (2018) Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys 9:400–408

    Article  Google Scholar 

  31. AshaRani P (2009) Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  PubMed  Google Scholar 

  32. Patel CB, Jyoti A. Promises of nanomaterials as antimicrobial agents: a review

  33. Wilkinson L, White R, Chipman J (2011) Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care 20(11):543–549

    Article  CAS  PubMed  Google Scholar 

  34. Mandoli C, Pagliari F, Pagliari S, Forte G, Di Nardo P, Licoccia S et al (2010) Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv Funct Mater 20(10):1617–1624

    Article  CAS  Google Scholar 

  35. Adams CF, Pickard MR, Chari DM (2013) Magnetic nanoparticle mediated transfection of neural stem cell suspension cultures is enhanced by applied oscillating magnetic fields. Nanomedicine 9(6):737–741

    Article  CAS  PubMed  Google Scholar 

  36. Revets H, De Baetselier P, Muyldermans S (2005) Nanobodies as novel agents for cancer therapy. Expert Opin Biol Ther 5(1):111–124

    Article  CAS  PubMed  Google Scholar 

  37. Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797

    Article  CAS  PubMed  Google Scholar 

  38. Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, Vincke C, Muyldermans S (2013) Nanobodies and their potential applications. Nanomedicine. 8(6):1013–1026

    Article  CAS  PubMed  Google Scholar 

  39. Jovčevska I, Muyldermans S (2020) The therapeutic potential of nanobodies. BioDrugs. 34(1):11–26

    Article  PubMed  Google Scholar 

  40. Helma J, Cardoso MC, Muyldermans S, Leonhardt H (2015) Nanobodies and recombinant binders in cell biology. J Cell Biol 209(5):633–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Muyldermans S (2020) Applications of nanobodies. Ann Rev Anim Biosci 9

  42. Vincke C, Muyldermans S (2012) Introduction to heavy chain antibodies and derived Nanobodies. Single Domain Antibodies: Springer, p. 15-26

  43. Gibbs WW (2005) Nanobodies. Sci Am 293(2):78–83

    Article  PubMed  Google Scholar 

  44. Deffar K, Shi H, Li L, Wang X, Zhu X (2009) Nanobodies-the new concept in antibody engineering. Afr J Biotechnol 8(12)

  45. De Meyer T, Muyldermans S, Depicker A (2014) Nanobody-based products as research and diagnostic tools. Trends Biotechnol 32(5):263–270

    Article  PubMed  Google Scholar 

  46. Vaneycken I, D’huyvetter M, Hernot S, De Vos J, Xavier C, Devoogdt N et al (2011) Immuno-imaging using nanobodies. Curr Opin Biotechnol 22(6):877–881

    Article  PubMed  Google Scholar 

  47. Steeland S, Vandenbroucke RE, Libert C (2016) Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 21(7):1076–1113

    Article  CAS  PubMed  Google Scholar 

  48. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52

    Article  CAS  PubMed  Google Scholar 

  49. Gao L, Liu G, Ma J, Wang X, Zhou L, Li X (2012) Drug nanocrystals: in vivo performances. J Control Release 160(3):418–430

    Article  CAS  PubMed  Google Scholar 

  50. Naasani I (2005) Nanocrystals. Google Patents

  51. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cho K, Wang X, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316

    Article  CAS  PubMed  Google Scholar 

  53. Scott R Armstrong JH. Alzheimers Dis Res Grant Advis Board

  54. Tehrani MD, Kim MO, Yoon J (2014) A novel electromagnetic actuation system for magnetic nanoparticle guidance in blood vessels. IEEE Trans Magn 50(7):1–12

    Article  Google Scholar 

  55. Vio V, Jose Marchant M, Araya E, Kogan MJ (2017) Metal nanoparticles for the treatment and diagnosis of neurodegenerative brain diseases. Curr Pharm Des 23(13):1916–1926

    Article  CAS  PubMed  Google Scholar 

  56. Kassaee SM, Taghi Goodarzi M, Abbasi OE (2018) Antioxidant, antiglycation and anti-hyperlipidemic effects of Trigonella foenum and Cinnamon in type 2 diabetic rats. Jundishapur J Nat Pharm Prod 13(1)

  57. Yadav N, Khatak S, Sara US (2013) Solid lipid nanoparticles-a review. Int J Appl Pharm 5(2):8–18

    CAS  Google Scholar 

  58. Shah R, Eldridge D, Palombo E, Harding I (2015) Lipid nanoparticles: production, characterization and stability. Springer

  59. Weber S, Zimmer A, Pardeike J (2014) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 86(1):7–22

    Article  CAS  PubMed  Google Scholar 

  60. Naja G, Bouvrette P, Hrapovic S, Luong JH (2007) Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst. 132(7):679–686

    Article  CAS  PubMed  Google Scholar 

  61. Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B (2016) Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Bio-sens Res 9:17–22

    Article  Google Scholar 

  62. Gao H (2016) Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 6(4):268–286

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sarkar A, Fatima I, Mohammad Sajid Jamal Q, Sayeed U, Khan KA, Akhtar S et al (2017) Nanoparticles as a carrier system for drug delivery across blood brain barrier. Curr Drug Metab 18(2):129–137

    Article  CAS  PubMed  Google Scholar 

  64. Malhotra M, Prakash S (2011) Targeted drug delivery across blood-brain-barrier using cell penetrating peptides tagged nanoparticles. Curr Nanosci 7(1):81–93

    Article  CAS  Google Scholar 

  65. Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazú V, Borm P, Estrada G, Ntziachristos V, Razansky D (2010) Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibr Toxicol 7(1):3

    Article  Google Scholar 

  66. Fan Y, Chen M, Zhang J, Maincent P, Xia X, Wu W (2018) Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. Crit Rev Ther Drug Carrier Syst 35(5)

  67. Hersh DS, Wadajkar AS, Roberts NB, Perez JG, Connolly NP, Frenkel V et al (2016) Evolving drug delivery strategies to overcome the blood brain barrier. Curr Pharm Des 22(9):1177–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64(2):129–137

    Article  CAS  PubMed  Google Scholar 

  69. Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F et al (2017) Toxicology of silica nanoparticles: an update. Arch Toxicol 91(9):2967–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ et al (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 32(36):9810–9817

    Article  CAS  PubMed  Google Scholar 

  71. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627

    Article  CAS  PubMed  Google Scholar 

  72. Eftekhari A, Dizaj SM, Chodari L, Sunar S, Hasanzadeh A, Ahmadian E, Hasanzadeh M (2018) The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother 103:1018–1027

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Asefy.

Ethics declarations

This research is involving no human participants and/or animals.

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Informed consent

Authors declare their consent on this paper publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asefy, Z., Hoseinnejhad, S. & Ceferov, Z. Nanoparticles approaches in neurodegenerative diseases diagnosis and treatment. Neurol Sci 42, 2653–2660 (2021). https://doi.org/10.1007/s10072-021-05234-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05234-x

Keywords

Navigation