Skip to main content

Advertisement

Log in

Dynamic increase in neutrophil levels predicts parenchymal hemorrhage and function outcome of ischemic stroke with r-tPA thrombolysis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

The higher level of neutrophil on admission has been reported to predict worse 3-month outcomes in ischemic stroke patients. Our study was to explore the dynamic changes of neutrophil and lymphocyte after r-tPA thrombolysis of ischemic stroke and the relationship with parenchymal hemorrhage (PH) and 3-month function outcome.

Methods

A total of 208 acute ischemic stroke (AIS) patients with intravenous thrombolysis were included and then received 3-month follow-up in the present study. Blood samples for neutrophil and lymphocyte counts were obtained on admission, at 24 h and at 7 days after r-tPA infusion. The associations of increase in neutrophil, lymphocyte, and neutrophil to lymphocyte ratio (NLR) with PH or 3-month poor outcome were examined by logistic regression.

Results

Increasing trends in the neutrophil and NLR were observed in AIS patients after r-tPA treatment. Increased level of neutrophil at 24 h after r-tPA infusion but not that on admission was associated with PH (OR = 2.86, P = 0.029) and 3-month poorer functional outcomes (OR = 2.67, P = 0.009). Moreover, patients were divided into four groups according to the percent change in neutrophil within 24 h following r-tPA treatment, and we found that there was a trend of incremental OR when compared higher increase group with lower ones.

Conclusions

Dynamic increase in neutrophil and NLR after stroke may predict PH and 3-month poor outcome in AIS patients receiving r-tPA treatment. Therefore, neutrophil and NLR may serve as activity markers for PH and 3-month poor prognosis in AIS patients with intravenous thrombolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PH:

Parenchymal hemorrhage

HT:

Hemorrhagic transformation

AIS:

Acute ischemic stroke

NLR:

Neutrophil to lymphocyte ratio

r-tPA:

Recombinant tissue plasminogen activator

MMP-9:

Matrix metalloproteinase-9

BBB:

Blood-brain barrier

OTT:

Onset to treatment time

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

NIHSS:

National Institutes of Health Stroke Scale

MRS:

Modified Rankin scale

SD:

Standard deviation

MCAO:

Middle cerebral artery occlusion

CRP:

C-Reactive protein

OR:

Odds ratio

CI:

Confidence interval

IQR:

Interquartile ranges

sICH:

Symptomatic intracerebral hemorrhages

References

  1. Sacco RL, Kasner SE, Broderick JP et al (2013) An updated definition of stroke for the 21st century a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke -Dallas 44(7):2064–2089

    Google Scholar 

  2. Meschia JF, Bushnell C, Bodenalbala B et al (2014) Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 45(12):3754–3832

    PubMed  PubMed Central  Google Scholar 

  3. Group IC, Sandercock P, Wardlaw JM et al (2012) The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial. Lancet. 379(9834):2352–2363

    Google Scholar 

  4. Hacke W, Kaste M, Bluhmki E et al (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med

  5. Jickling GC, Liu D, Stamova B, Ander BP, Zhan X, Lu A, Sharp FR (2014) Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab 34(2):185–199

    CAS  PubMed  Google Scholar 

  6. Zhu W, Guo Z, Yu S, Leys D, Bordet R (2015) Higher neutrophil counts before thrombolysis for cerebral ischemia predict worse outcomes. Neurology 85(16):1408–1416

    Google Scholar 

  7. Guo Z, Yu S, Xiao L, Chen X, Ye R, Zheng P, Dai Q, Sun W, Zhou C, Wang S, Zhu W, Liu X (2016) Dynamic change of neutrophil to lymphocyte ratio and hemorrhagic transformation after thrombolysis in stroke. J Neuroinflammation 13(1):199

    PubMed  PubMed Central  Google Scholar 

  8. Kim JY, Park J, Ji YC, Kim SH, Lee JE. Inflammation after ischemic stroke: the role of leukocytes and glial cells. Exp Neurobiol. 2016. 25(5): 241-

  9. Herz J, Sabellek P, Lane TE, Gunzer M, Hermann DM, Doeppner TR (2015) Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice. Stroke 46(10):2916–2925

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Perez-De-Puig I, Miró-Mur F, Ferrer-Ferrer M et al (2015) Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol 129(2):239–257

    CAS  PubMed  Google Scholar 

  11. Tokgoz S, Keskin S, Kayrak M, Seyithanoglu A, Ogmegul A (2014) Is neutrophil/lymphocyte ratio predict to short-term mortality in acute cerebral infarct independently from infarct volume. J Stroke Cerebrovasc Dis 23(8):2163–2168

    PubMed  Google Scholar 

  12. Schwartz M, Moalem G (2001) Beneficial immune activity after CNS injury: prospects for vaccination. J Neuroimmunol 113(2):185–192

    CAS  PubMed  Google Scholar 

  13. Fang YN, Tong MS, Sung PH et al (2017) Higher neutrophil counts and neutrophil-to-lymphocyte ratio predict prognostic outcomes in patients after non-atrial fibrillation-caused ischemic stroke. Biom J 40(3):154–162

    Google Scholar 

  14. Rosell A, Cuadrado E, Ortegaaznar A, Hernándezguillamon M, Lo EH, Montaner J (2008) MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke. 39(4):1121–1126

    CAS  PubMed  Google Scholar 

  15. Mao Leilei,Li Peiying,Zhu Wen et al. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke.[J] .Brain, 2017, 140: 1914-1931

  16. Xue J, Huang W, Chen X, Li Q, Cai Z, Yu T, Shao B (2017) Neutrophil-to-lymphocyte ratio is a prognostic marker in acute ischemic stroke. J Stroke Cerebrovasc Dis 26(3):650–657

    PubMed  Google Scholar 

  17. Qun S, Tang Y, Sun J et al (2017) Neutrophil-to-lymphocyte ratio predicts 3-month outcome of acute ischemic stroke. Neurotox Res 31(3):1–9

    Google Scholar 

  18. Pektezel M Yasir,Yilmaz Ezgi,Arsava E Murat et al. Neutrophil-to-lymphocyte ratio and response to intravenous thrombolysis in patients with acute ischemic stroke.[J] .J Stroke Cerebrovasc Dis, 2019, 28: 1853–1859

  19. Aho K, Harmsen P, Hatano S, Marquardsen J, Smirnov VE, Strasser T (1980) Cerebrovascular disease in the community: results of a WHO collaborative study. Bull World Health Organ 58(1):113–130

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jauch EC, Saver JL, Adams HP et al (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Circulation. 8(3):870–947

    Google Scholar 

  21. Churilov L, Arnup S, Johns H et al (2015) An improved method for simple, assumption-free ordinal analysis of the modified Rankin scale using generalized odds ratios. Int J Stroke 9(8):999–1005

    Google Scholar 

  22. Maestrini I, Strbian D, Gautier S, Haapaniemi E, Moulin S, Sairanen T, Dequatre-Ponchelle N, Sibolt G, Cordonnier C, Melkas S, Leys D, Tatlisumak T, Bordet R (2015) Higher neutrophil counts before thrombolysis for cerebral ischemia predict worse outcomes. Neurology. 85(16):1408–1416

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Duan Z, Wang H, Wang Z, Hao Y, Zi W, Yang D, Zhou Z, Liu W, Lin M, Shi Z, Lv P, Wan Y, Xu G, Xiong Y, Zhu W, Liu X, ACTUAL Investigators (2018) Neutrophil-lymphocyte ratio predicts functional and safety outcomes after endovascular treatment for acute ischemic stroke. Cerebrovasc Dis 45(5–6):221–227

    PubMed  Google Scholar 

  24. Raymond S, Connie W (2016) Ischemia, immunosuppression and infection—tackling the predicaments of post-stroke complications. Int J Mol Sci 17(1):551–556

    Google Scholar 

  25. Muhammad S, Haasbach E, Kotchourko M et al (2011) Influenza virus infection aggravates stroke outcome. Stroke 42(3):783

    CAS  PubMed  Google Scholar 

  26. Mccoll BW, Allan SM, Rothwell NJ (2009) Systemic infection, inflammation and acute ischemic stroke. Neuroscience. 158(3):1049–1061

    CAS  PubMed  Google Scholar 

  27. Zeller JA, Lenz A, Eschenfelder CC et al (2005) Platelet–leukocyte interaction and platelet activation in acute stroke with and without preceding infection. Arter Thromb Vas Biol 25(7):1519

    CAS  Google Scholar 

  28. Barone FC, Hillegass LM, Price WJ, White RF, Lee EV, Feuerstein GZ, Sarau HM, Clark RK, Griswold DE (1991) Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: myeloperoxidase activity assay and histologic verification. J Neurosci Res 29(3):336–345

    CAS  PubMed  Google Scholar 

  29. Kim J, Song T, Park JH, Lee HS, Nam CM, Nam HS, Kim YD, Heo JH Different prognostic value of white blood cell subtypes in patients with acute cerebral infarction. Atherosclerosis. 2012. 222(2): 464–467

  30. Matsuo Y, Kihara T, Ikeda M, Ninomiya M, Onodera H, Kogure K (1995) Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: effect of neutrophil depletion on extracellular ascorbyl radical formation. J Cereb Blood Flow Metab 15(6):941–947

    CAS  PubMed  Google Scholar 

  31. Dirnagl U (1999) Pathobiology of ischaemic stroke : an integrated view. Trends Neurosci 22(9):391–397

    CAS  PubMed  Google Scholar 

  32. Buck BH, Liebeskind DS, Saver JL, Bang OY, Yun SW, Starkman S, Ali LK, Kim D, Villablanca JP, Salamon N, Razinia T, Ovbiagele B (2008) Early Neutrophilia is associated with volume of ischemic tissue in acute stroke. Stroke. 39(2):355–360

    PubMed  Google Scholar 

  33. Shi J, Peng H, You S, Liu Y, Liu CF (2018) Increase in neutrophil after r-tPA thrombolysis predicts poor functional outcome of ischemic stroke: a longitudinal study. Eur J Neurol 25(4):687–e645

    CAS  PubMed  Google Scholar 

  34. Gautier S, Ouk T, Tagzirt M et al (2014) Impact of the neutrophil response to granulocyte colony-stimulating factor on the risk of hemorrhage when used in combination with tissue plasminogen activator during the acute phase of experimental stroke. J Neuroinflammation 11(1):96

    PubMed  PubMed Central  Google Scholar 

  35. Mccoll BW, Rothwell NJ, Allan SM (2007) Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci 27(16):4403–4412

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Garau A, Bertini R, Colotta F, Casilli F, Bigini P, Cagnotto A, Mennini T, Ghezzi P, Villa P (2005) Neuroprotection with the CXCL8 inhibitor repertaxin in transient brain ischemia. Cytokine. 30(3):125–131

    CAS  PubMed  Google Scholar 

  37. Li Z, Zheng GZ, Rui LZ, Mei L, Chopp M (2003) Effects of a selective CD11b/CD18 antagonist and recombinant human tissue plasminogen activator treatment alone and in combination in a rat embolic model of stroke. Stroke 34(7):1790–1795

    Google Scholar 

  38. Harris AK, Ergul A, Kozak A, Machado LS, Johnson MH, Fagan SC (2005) Effect of neutrophil depletion on gelatinase expression, edema formation and hemorrhagic transformation after focal ischemic stroke. BMC Neurosci 6(1):49

    PubMed  PubMed Central  Google Scholar 

  39. Ludewig P, Sedlacik J, Gelderblom M, Bernreuther C, Korkusuz Y, Wagener C, Gerloff C, Fiehler J, Magnus T, Horst AK (2013) Carcinoembryonic antigen-related cell adhesion molecule 1 inhibits MMP-9-mediated blood-brain-barrier breakdown in a mouse model for ischemic stroke. Circ Res 113(8):1013–1022

    CAS  PubMed  Google Scholar 

  40. Dziedzic T (2015) Systemic inflammation as a therapeutic target in acute ischemic stroke. Expert Rev Neurother 15(5):523–531

    CAS  PubMed  Google Scholar 

  41. Tiainen M, Meretoja A, Strbian D, Suvanto J, Curtze S, Lindsberg PJ, Soinne L, Tatlisumak T, Helsinki Stroke Thrombolysis Registry Group (2013) Body temperature, blood infection parameters, and outcome of thrombolysis-treated ischemic stroke patients. Int J Stroke 8(8):632–638

    PubMed  Google Scholar 

  42. Napoli MD, Papa F, Bocola V (2001) Prognostic influence of increased C-reactive protein and fibrinogen levels in ischemic stroke. Stroke. 32(1):133–138

    PubMed  Google Scholar 

  43. Gill D, Sivakumaran P, Wilding P, Love M, Veltkamp R, Kar A (2016) Trends in C-reactive protein levels are associated with neurological change twenty-four hours after thrombolysis for acute ischemic stroke. J Stroke Cerebrovasc Dis 25(8):1966–1969

    PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (81673144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuanShao Lin.

Ethics declarations

Conflict of interest

None.

Ethical approval

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, A., Cheng, Y., Lin, Y. et al. Dynamic increase in neutrophil levels predicts parenchymal hemorrhage and function outcome of ischemic stroke with r-tPA thrombolysis. Neurol Sci 41, 2215–2223 (2020). https://doi.org/10.1007/s10072-020-04324-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04324-6

Keywords

Navigation