Skip to main content
Log in

Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis

  • Published:
Molecules and Cells

Abstract

In higher plants, the regulation of anthocyanin synthesis by various factors including light, sugars and hormones is mediated by numerous regulatory factors acting at the transcriptional level. Here, the association between sucrose and the plant hormone, cytokinin, in the presence of light was investigated to elucidate cytokinin signaling cascades leading to the transcriptional activation of anthocyanin biosynthesis genes in Arabidopsis seedlings. We showed that cytokinin enhances anthocyanin content and transcript levels of sugar inducible structural gene UDPglucose: flavonoid 3-O-glucosyl transferase (UF3GT) and regulatory gene PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1). Genetic analysis showed that cytokinin signaling modulates sugar-induced anthocyanin biosynthesis through a two-component signaling cascade involving the type-B response regulators ARR1, ARR10 and ARR12 in a redundant manner. Genetic, physiological and molecular biological approaches demonstrated that cytokinin enhancement is partially dependent on phytochrome and cryptochrome downstream component HY5, but mainly on photosynthetic electron transport. Taken together, we suggest that cytokinin acts down-stream of the photosynthetic electron transport chain in which the plastoquinone redox poise is modulated by sugars in a photoreceptor independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anantharaman, V., and Aravind, L. (2001). The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors. Trends Biochem. Sci. 26, 579–582.

    Article  PubMed  CAS  Google Scholar 

  • Argyros, R.D., Mathews, D.E., Chiang, Y.H., Palmer, C.M., Thibault, D.M., Etheridge, N., Argyros, D.A., Mason, M.G., Kieber, J.J., and Schaller, G.E. (2008). Type-B response regulators of Arabidopsis play key roles in cytokinin signalling and plant development. Plant Cell 20, 2102–2116.

    Article  PubMed  CAS  Google Scholar 

  • Bellafiore, S., Barneche, F., Peltier, G., and Rochaix, J.D. (2005). State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433, 892–895.

    Article  PubMed  CAS  Google Scholar 

  • Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F.M., Ponce, M.R., et al. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671.

    Article  PubMed  CAS  Google Scholar 

  • Das, P.K., Bang, G., Choi, S.B., Yoo, S.D., and Park Y.-I. (2010). Photosynthesis-dependent anthocyanin pigmentation in Arabidopsis. Plant Signal. Behav. 6, 1–4.

    Google Scholar 

  • Gonzalez, A., Zhao, M., Leavitt, J.M., and Lloyd, A.M. (2008). Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 53, 814–827.

    Article  PubMed  CAS  Google Scholar 

  • Guo, J.C., Hu, X.W., and Duan, R.J. (2005). Interactive effects of cytokinins, light and sucrose on the phenotypes and the syntheses of anthocyanins, lignins in cytokinin over-producing transgenic Arabidopsis. J. Plant Growth Regul. 24, 93–101.

    Article  CAS  Google Scholar 

  • Jeong, S.W., Das, P.K., Jeoung, S.C., Song, J.Y., Lee, H.K., Kim, Y.K., Kim, W.J., Park, Y.I., Yoo, S.D., Choi, S.B., et al. (2010). Ethylene suppression of sugar-Induced anthocyanin pigmentation in Arabidopsis thaliana. Plant Physiol. 154, 1514–1531.

    Article  PubMed  CAS  Google Scholar 

  • Jung, C., Shim, J.S., Seo, J.S., Lee, H.Y., Kim, C.H., Choi, Y.D., and Cheong, J.-J. (2010). Non-specific phytohormonal induction of AtMYB44 and suppression of jasmonate-responsive gene activation in Arabidopsis thaliana. Mol. Cells 29, 71–76.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.S., Lee, B.H., Kim, S.H., Ok, K.H., and Cho, K.Y. (2006). Response to environmental and chemical signals for anthocyanin biosynthesis in non-chlorophyllous corn (Zea mays L.) leaf. J. Plant Biol. 49, 16–25.

    Article  CAS  Google Scholar 

  • Lau, O.S., and Deng, X.Y. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Curr. Opin. Plant Biol. 13, 571–577.

    Article  PubMed  CAS  Google Scholar 

  • Loreti, E., Povero, G., Novi, G., Solfanelli, C., Alpi, A., and Perat, P. (2008). Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol. 179, 1004–1016.

    Article  PubMed  CAS  Google Scholar 

  • Mason, M.G., Mathews, D.E., Argyros, D.A., Maxwell, B.B., Kieber, J.J., Alonso, J.M., Ecker, J.R., and Schaller, G.E. (2005). Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17, 3007–3018.

    Article  PubMed  CAS  Google Scholar 

  • Mehrtens, F., Kranz, H., Bednarek, P., and Weisshaar, B. (2005). The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol. 138, 1083–1096.

    Article  PubMed  CAS  Google Scholar 

  • Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W.H., Liu, Y.X., Hwang, I., Jones, T., and Sheen, J. (2003). Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300, 332–336.

    Article  PubMed  CAS  Google Scholar 

  • Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M., and Lepiniec, L. (2000). The TT8 gene encodes a basic helix-loophelix domain protein required for expression of DFR and BAN genes in arabidopsis siliques. Plant Cell 12, 1863–1878.

    PubMed  CAS  Google Scholar 

  • Nesi, N., Jond, C., Debeaujon, I., Caboche, M., and Lepiniec, L. (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13, 2099–2114.

    PubMed  CAS  Google Scholar 

  • Page, M., Sultana, N., Paszkiewicz, K., Florance, H., and Smirnoff, N. (2011). The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis. Plant Cell Environ. 35, 388–404.

    Article  PubMed  Google Scholar 

  • Peng, Z., Han, C., Yuan, L., Zhang, K., Huang, H., and Ren, C. (2011). Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis Seedlings. J. Integr. Plant Biol. 53, 632–640.

    Article  PubMed  CAS  Google Scholar 

  • Qi, T., Song, S., Ren, Q., Wu, D., Huang, H., Chen, Y., Fan, M., Peng, W., Ren. C., and Xie, D. (2011). The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23, 1795–1814.

    Article  PubMed  CAS  Google Scholar 

  • Rabino, I., and Mancinelli, A.L. (1986). Light temperature and anthocyanin production. Plant Physiol. 81, 922–924.

    Article  PubMed  CAS  Google Scholar 

  • Riefler, M., Novak, O., Strnad, M., and Schmülling, T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development and cytokinin metabolism. Plant Cell 18, 40–54.

    Article  PubMed  CAS  Google Scholar 

  • Roe, J.H. (1934). A colorimetric method for the determination of fructose in urine. J. Biol. Chem. 107, 15–22.

    CAS  Google Scholar 

  • Schmülling, T. (2004). Cytokinin. In Encyclopedia of Biological Chemistry, W. Lennarz and M.D. Lane, eds. (Academic Press/Elsevier Science), pp. 1–7.

  • Schneider, M.J., and Stimson, W.R. (1971). Contribution of photosynthesis and phytochrome to the formation of anthocyanin in turnip seedlings. Plant Physiol. 48, 312–315.

    Article  PubMed  CAS  Google Scholar 

  • Shan, X., Zhang, Y., Peng, W., Wang, Z., and Xie, D. (2009). Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J. Exp. Bot. 13, 3849–3860.

    Article  Google Scholar 

  • Shin, J., Park, E., and Choi, G. (2007). PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J. 49, 981–994.

    Article  PubMed  CAS  Google Scholar 

  • Sivitz, A.B., Reinders, A., and Ward, J.M. (2008). Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiol. 147, 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., and Perata, P. (2006). Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 140, 637–646.

    Article  PubMed  CAS  Google Scholar 

  • Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K., and Weisshaar, B. (2007). Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 50, 660–677.

    Article  PubMed  CAS  Google Scholar 

  • Teng, S., Keurentjes, J., Bentsink, L., Koornneef, M., and Smeekens, S. (2005). Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 139, 1840–1852.

    Article  PubMed  CAS  Google Scholar 

  • Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signaling. Nature 448, 661–665.

    Article  PubMed  CAS  Google Scholar 

  • To, J.P., Haberer, G., Ferreira, F.J., Deuere, J., Mason, M.G., Schaller, G.E., Alonso, J.M., Ecker, J.R., and Kieber, J.J. (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16, 658–671.

    Article  PubMed  CAS  Google Scholar 

  • Trebst, A. (1980). Inhibitors in electron flow. Methods Enzymol. 69, 675–715.

    Article  CAS  Google Scholar 

  • Vainonen, J.P., Hansson, M., and Vener, A.V. (2005). STN8 protein kinase in Arabidopsis thaliana is specific in phosphorylation of photosystem II core proteins. J. Biol. Chem. 280, 33679–33686.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche, F., Habricot, Y., Condiff, A.S., Maldiney, R., Van der Straeten, D., and Ahmad, M. (2007). HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant J. 49, 428–441.

    Article  PubMed  CAS  Google Scholar 

  • Wade, H.K., Sohal, A.K., and Jenkins, G.I. (2003). Arabidopsis ICX1 is a negative regulator of several pathways regulating flavonoid biosynthesis genes. Plant Physiol. 131, 707–715.

    Article  PubMed  CAS  Google Scholar 

  • Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H., and Schmulling, T. (2003). Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15, 2532–2550.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, W.Y., Sheen, J., and Jang, J.C. (2000). The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol. Biol. 44, 451–461.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Il Park.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Das, P.K., Shin, D.H., Choi, SB. et al. Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis. Mol Cells 34, 93–101 (2012). https://doi.org/10.1007/s10059-012-0114-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0114-2

Keywords

Navigation