Skip to main content
Log in

Simultaneous electrical online estimation of changes in blood hematocrit and temperature in cardiopulmonary bypass

  • Original Article
  • Cardiopulmonary Bypass
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Two equations have been developed from multi-frequency measurements of blood impedance Zb for a simultaneous electrical online estimation of changes in blood hematocrit ΔH [%] and temperatures ΔT [K] in cardiopulmonary bypass (CPB). Zb of fixed blood volumes at varying H and T were measured by an impedance analyzer and changes in blood conductivity σb and relative permittivity εb computed. Correlation analysis were based on changes in σb with H or T at f = 1 MHz while H and T equations were developed by correlating changes in εb with H and T at dual frequencies of f = 1 MHz and f = 10 MHz which best capture blood plasma Zp and red blood cell cytoplasm Zcyt impedances respectively. Results show high correlations between σb and H (R2 = 0.987) or σb and T (R2 = 0.9959) indicating dependence of the electrical parameters of blood on its H and T. Based on computed εb, changes in blood hematocrit ΔH and temperature ΔT at a given time t are estimated as ΔH(t) = 1.7298Δεb (f = 1 MHz) – 1.0669Δεb (f = 10 MHz) and ΔT(t) = -2.186Δεb (f = 1 MHz) + 2.13Δεb (f = 10 MHz). When applied to a CPB during a canine mitral valve plasty, ΔH and ΔT had correlations of R2 = 0.9992 and R2 = 0.966 against H and T respectively as measured by conventional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Karahan M, Sabit S, Umit K. Effects of continuous-flow left ventricular assist devices on cerebral hemodynamics. Artif Organs. 2019;44:457–64.

    Article  Google Scholar 

  2. Al T, Ambar S, Krystina A, Sciamanna C, Pauwaa S, Macaluso G, et al. A case series of patients with left ventricular assist devices and concomitant mechanical heart valves. Artif Organs. 2020;44(10):1050–4.

    Article  Google Scholar 

  3. Nishikawa M, Willey J, Takayama H, Kaku Y, Ning Y, Kurlansky PA, et al. Stroke patterns and cannulation strategy during veno - arterial extracorporeal membrane support. J Artif Organs. 2021. https://doi.org/10.1007/s10047-021-01300-5.

    Article  PubMed  Google Scholar 

  4. Hastings SM, Ku DN, Wagoner S, Maher KO, Deshpande S. Sources of circuit thrombosis in pediatric extracorporeal membrane oxygenation. ASAIO J. 2017;63(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  5. Berei TJ, Lilliblad MP, Wilson KJ, Garberich RF, Hryniewicz KM. Evaluation of systemic heparin versus bivalirudin in adult patients supported by extracorporeal membrane oxygenation. ASAIO J. 2018;64(5):623–9.

    Article  CAS  PubMed  Google Scholar 

  6. Hasegawa T, Iba Y, Naraoka S, Nakajima T, Hashimoto S, Murohashi T, et al. Improvement of predicted hematocrit values after the initiation of cardiopulmonary bypass in cardiovascular surgery. J Artif Organs. 2021. https://doi.org/10.1007/s10047-021-01295-z.

    Article  PubMed  Google Scholar 

  7. Schmied H, Kurz A, Sessler DI, Kozek S, Reiter A. Requirements during total hip arthroplasty mild. Lancet. 1995;347:289–92.

    Article  Google Scholar 

  8. Kaukuntla H, Harrington D, Bilkoo I, Clutton-Brock T, Jones T, Bonser RS. Temperature monitoring during cardiopulmonary bypass - do we undercool or overheat the brain? Eur J Cardio-thoracic Surg. 2004;26(3):580–5.

    Article  Google Scholar 

  9. England JM, Waters DAW. Re-assessment of the reliability of the haematocrit. Br J Heamatology. 1972;23:247–56.

    Article  CAS  Google Scholar 

  10. Langham GE, Maheshwari A, Contrera K, You J, Mascha E, Sessler DI. Noninvasive temperature monitoring in postanesthesia care units. Anesthesiology. 2009;111(1):90–6.

    Article  PubMed  Google Scholar 

  11. Engelman R, Baker RA, Likosky DS, Grigore A, Dickinson TA, Shore-Lesserson L, et al. Clinical practice guidelines for cardiopulmonary bypass - temperature management during cardiopulmonary bypass. Ann Thorac Surg. 2015;100(2):748–57.

    Article  PubMed  Google Scholar 

  12. Sifuna MW, Baidillah R, Sapkota A, Takei M. A Cole-Cole dielectric relaxation analysis of albumin and γ -globulins for protein quantification by electrical impedance spectroscopy. Electroanalysis. 2020;32:1121–9.

    Article  CAS  Google Scholar 

  13. Sifuna MW, Baidillah MR, Kawashima D, Darma PN, Odari EO, Takei M. Determination of sensitive frequency margin for aggregated protein concentration quantification by fd-electrical impedance tomography. Measurement [Internet]. 2021;186:110–35.

    Google Scholar 

  14. Zhbanov A, Yang S. Electrochemical impedance spectroscopy of blood for sensitive detection of blood hematocrit, sedimentation and dielectric properties. Anal Methods. 2017;9(22):3302–13.

    Article  CAS  Google Scholar 

  15. Hayashi Y, Brun MA, Machida K, Nagasawa M. Principles of dielectric blood coagulometry as a comprehensive coagulation test. Anal Chem. 2015;87(19):10072–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ramaswamy B, Yeh YT, Zheng S. Microfluidic device and system for point-of-care blood coagulation measurement based on electrical impedance sensing. Sensors Actuators B Chem. 2013;180:21–7.

    Article  CAS  Google Scholar 

  17. Fuse T, Sapkota A, Maruyama O, Kosaka R, Yamane T, Takei M. Analysis of the influence of volume and red blood cell concentration of a thrombus on the permittivity of blood. J Biorheol. 2015;29(1):15–8.

    Article  Google Scholar 

  18. Asakura Y, Sapkota A, Maruyama O, Kosaka R, Yamane T, Takei M. Relative permittivity measurement during the thrombus formation process using the dielectric relaxation method for various hematocrit values. J Artif Organs. 2015;18(4):346–53.

    Article  CAS  PubMed  Google Scholar 

  19. Cha K, Faris RG, Brown EF, Wilmore DW. An electronic method for rapid measurement of haematocrit in blood samples. Physiol Meas. 1994;15:129–37.

    Article  CAS  PubMed  Google Scholar 

  20. Haines DE, Verow AF. Observations on electrode-tissue interface temperature and effect on electrical impedance during radiofrequency ablation of ventricular myocardium. Circulation. 1990;82(3):1034–8.

    Article  CAS  PubMed  Google Scholar 

  21. Hoetink AE, Faes TJC, Visser KR, Heethaar RM. On the flow dependency of the electrical conductivity of blood. IEEE Trans Biomed Eng. 2004;51(7):1251–61.

    Article  CAS  PubMed  Google Scholar 

  22. Sifuna MW, Koishi M, Uemura T, Tatekawa H, Haneishi H, Sapkota A, et al. Connector sensors for permittivity-based thrombus monitoring in extracorporeal life support. J Artif Organs. 2020;24(1):15–21.

    Article  PubMed  Google Scholar 

  23. Zhao T, Jacobson B, Ribbe T. Triple-frequency method for measuring blood impedance. Physiol Meas. 1993;14:145–56.

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen Huu D, Kikuchi D, Maruyama O, Sapkota A, Takei M. Cole-Cole analysis of thrombus formation in an extracorporeal blood flow circulation using electrical measurement. Flow Meas Instrum. 2017;53:172–9.

    Article  Google Scholar 

  25. Li J, Sapkota A, Kikuchi D, Sakota D, Maruyama O, Takei M. Red blood cells aggregability measurement of coagulating blood in extracorporeal circulation system with multiple-frequency electrical impedance spectroscopy. Biosens Bioelectron. 2018;112:79–85.

    Article  CAS  PubMed  Google Scholar 

  26. Zhbanov A, Yang S. Effects of aggregation on blood sedimentation and conductivity. PLoS One. 2015;10(6):1–25.

    Article  Google Scholar 

  27. Zhang A, Kawashima D, Obara H, Takei M. Analysis of influence of fibrinogen concentration on blood dielectproperties by ghz electrical impedance spectroscopy. J Biorheol. 2020;34(1):38–46.

    Article  Google Scholar 

  28. Tran AK, Kawashima D, Sugarawa M, Obara H, Okeyo KO, Takei M. Development of a noise elimination electrical impedance spectroscopy system for single cell identification. Sens Bio-Sensing Res. 2020;30:100381.

    Article  Google Scholar 

  29. Tran AK, Sapkota A, Wen J, Li J, Takei M. Linear relationship between cytoplasm resistance and hemoglobin in red blood cell hemolysis by electrical impedance spectroscopy and eight-parameter equivalent circuit. Biosens Bioelectron. 2018;119:103–9.

    Article  CAS  PubMed  Google Scholar 

  30. Pethig R. Protein-water interactions determined by dielectric methods. Annu Rev Phys Chem. 1992;43(1):177–205.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao T. Electrical impedance and haematocrit of human blood with various anticoagulants. Physiol Meas. 1993;14:299.

    Article  CAS  PubMed  Google Scholar 

  32. Baskurt OK, Uyuklu M, Meiselman HJ. Time course of electrical impedance during red blood cell aggregation in a glass tube: comparison with light transmittance. IEEE Trans Biomed Eng. 2010;57(4):969–78.

    Article  PubMed  Google Scholar 

  33. Cametti C, Marchetti S, Gambi CMC, Onori G. Dielectric relaxation spectroscopy of lysozyme aqueous solutions: analysis of the δ-dispersion and the contribution of the hydration water. J Phys Chem B. 2011;115(21):7144–53.

    Article  CAS  PubMed  Google Scholar 

  34. Pradhan R, Mitra A, Das S. Impedimetric characterization of human blood using three-electrode based ECIS devices. J Electr Bioimpedance [Internet]. 2012;3(1):12–9.

    Article  Google Scholar 

  35. Asami K. Cell Electrofusion in centrifuged erythrocyte pellets assessed by dielectric spectroscopy. J Membr Biol. 2016;249(1–2):31–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the technical support from Ryubu Shoji and the staff of the animal hospital during the experiments.

Author information

Authors and Affiliations

Authors

Contributions

MWS and YN ran experiments. MWS drafted and revised the manuscript. DK revised the manuscript. KM did the surgery and revised the manuscript. HO and MT revised the manuscript.

Corresponding authors

Correspondence to Daisuke Kawashima or Masahiro Takei.

Ethics declarations

Conflict of interest

The study had no funding. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sifuna, M.W., Kawashima, D., Matsuura, K. et al. Simultaneous electrical online estimation of changes in blood hematocrit and temperature in cardiopulmonary bypass. J Artif Organs 25, 305–313 (2022). https://doi.org/10.1007/s10047-022-01320-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-022-01320-9

Keywords

Navigation