Skip to main content

Changes in Classical Monitoring: Hemodynamic Monitoring, New Devices, NIRS, etc.

  • Chapter
  • First Online:
Anesthesia in Thoracic Surgery

Abstract

At the present time, the technology and clinical data describing hemodynamic monitoring devices are crucial for anesthesiologists and intensivists caring for patients undergoing thoracic surgical procedures, so that they may better utilize available technology to improve outcomes in this high-risk surgical population.

In theory, monitoring cardiac output (CO) and stroke volume (SV) could offer a more accurate assessment of circulatory state than conventional vital signs. Although invasive monitoring is considered as the reference method, non-invasive monitoring presents the obvious advantage of being associated with fewer complications, at the expanse of accuracy, precision, and step-response change, and might be useful for a broad patient population.

The adequacy of oxygenation is determined by cardiac output, hemoglobin level, partial arterial oxygen pressure, oxygen affinity of hemoglobin and local microcirculatory regulation parameters. Global markers such as mixed/central venous oxygen saturation and lactate levels are used in critically ill patients with impaired tissue oxygen presentation. Techniques such as NIRS can be used for organ perfusion assessment and adequacy of oxygenation.

We review on this chapter several methods for monitoring CO and SV and also we review the importance of using Near-infrared spectroscopy (NIRS) in our thoracic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wheeler OH. Near infrared spectra. A neglected field of spectral study. J Chem Educ. 1960;37:234–6.

    Article  CAS  Google Scholar 

  2. Herschel W. Experiments on the refrangibility of the invisible rays of the sun. Phil Trans R Soc Lond. 1800;90(Pt II):284–92.

    Google Scholar 

  3. Goddu RF, Delker D. Spectra-structure correlations for the near-infrared region. Anal Chem. 1960;32:140–1.

    CAS  Google Scholar 

  4. Whetsel KB. NIR News. 1991;2(5):10–1.

    Article  Google Scholar 

  5. Norris KH, Barnes RF, Moore JE, Shenk JS. Predicting forage quality by infrared reflectance spectroscopy. J Anim Sci. 1976;43:889–97.

    Google Scholar 

  6. Norris KH, Hart JR. Proceedings of the 1963 International Symposium on Humidity and Moisture, vol. 4. New York, NY: Reinhold Publishing; 1965. p. 19–25.

    Google Scholar 

  7. Norris KH, Hart JR. Direct spectrophotometric determination of moisture content of grain and seeds. J Near Infr Spectrosc. 1996;4:23–9.

    Article  CAS  Google Scholar 

  8. Jobsis FF. Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198:1264–7.

    Article  CAS  PubMed  Google Scholar 

  9. Cope M, Delpy DT. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput. 1988;26:289–94.

    Article  CAS  PubMed  Google Scholar 

  10. Wallon J, Yan SH, Tong J, Meurens M, Haot J. Identification of breast carcinomatous tissue by near-infrared reflectance spectroscopy. Appl Spectrosc. 1994;48(3):190–3.

    Google Scholar 

  11. Quaresima V, Ferrari M. Medical near infrared spectroscopy: a prestigious history and a bright future. NIR News. 2016;27(1):10–3.

    Article  Google Scholar 

  12. Hall W, Pollard A. Near-infrared spectrophotometry: a new dimension in clinical chemistry. Clin Chem. 1992;38:1623–31.

    Article  CAS  PubMed  Google Scholar 

  13. Brazy JE, Lewis DW, Mitnisk MH, Jöbsis FF. Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observation. Pediatrics. 1985;75:217–25.

    CAS  PubMed  Google Scholar 

  14. Ohmae E, Ouchi Y, Oda M, Suzuki T, Nobesawa S, Kanno T, et al. Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements. Neuroimage. 2006;29(3):697–705.

    Article  PubMed  Google Scholar 

  15. Germon TJ, Evans PD, Barnett NJ, Wall P, Manara AR, Nelson RJ. Cerebral near infrared spectroscopy: emitter-detector separation must be increased. Br J Anaesth. 1999;82(6):831–7.

    Article  CAS  PubMed  Google Scholar 

  16. Pellicer A, Bravo MC. Near-infrared spectroscopy: a methodology-focused review. Semin Fetal Neonatal Med. 2011;16(1):42–9.

    Article  PubMed  Google Scholar 

  17. Thavasothy M, Broadhead M, Elwell C, Peters M, Smith M. A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 near-infrared spectrophotometers. Anaesthesia. 2002;57(10):999–1006.

    Article  CAS  PubMed  Google Scholar 

  18. Steppan J, Hogue CW Jr. Cerebral and tissue oximetry. Best Pract Res Clin Anaesthesiol. 2014;28(4):429–39.

    Article  PubMed  PubMed Central  Google Scholar 

  19. McCormick PW, Stewart M, Goetting MG, Balakrishnan G. Regional cerebrovascular oxygen saturation measured by optical spectroscopy in humans. Stroke. 1991;22(5):596–602.

    Article  CAS  PubMed  Google Scholar 

  20. Denault A, Deschamps A, Murkin JM. A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothorac Vasc Anesth. 2007;11(4):274–81.

    Article  PubMed  Google Scholar 

  21. Butterworth JF, Mackey DE, Wasnick JD. Morgan & Mikhail’s clinical anesthesiology. New York, NY: McGraw-Hill; 2013. p. 123–42.

    Google Scholar 

  22. Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth. 2009;103(Suppl 1):i3–13.

    Article  PubMed  Google Scholar 

  23. Yoshitani K. Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia. Br J Anaesth. 2005;94(3):341–6.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshitani K, Kawaguchi M, Miura N, Okuno T, Kanoda T, Ohnishi Y, et al. Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectroscopy measurements. Anesthesiology. 2007;106(3):458–62.

    Article  PubMed  Google Scholar 

  25. Cooper RJ, Selb J, Gagnon L, Phillip D, Schytz HW, Iversen HK, et al. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Front Neurosci. 2012;6:147.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kainerstorfer JM, Sassaroli A, Tgavalekos KT, Fantini S. Cerebral autoregulation in the microvasculature measured with near-infrared spectroscopy. J Cereb Blood Flow Metab. 2015;35:959–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kooi EMW, Verhagen EA, Elting JWJ, Czosnyka M, Austin T, Wong FY, Aries MJH. Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature. Expert Rev Neurother. 2017;17(8):801–18.

    Article  CAS  PubMed  Google Scholar 

  28. Demir A, Balcı E, Karadeniz U. Quick evaluation of cerebral autoregulation limits with near infrared spectroscopic techniques in the intraoperative period. Turk J Anaesthesiol Reanim. 2018;46(4):316–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Carrie MG, Rosenblatt K, Lara LR, Winters B, Nyquist P, Hogue C. Near-infrared spectroscopy (NIRS) to monitor cerebral autoregulation in sepsis: a potential method to individualize resuscitation endpoints. Am J Respir Crit Care Med. 2016;193:A7037.

    Google Scholar 

  30. Moerman A, De Hert S. Recent advances in cerebral oximetry. Assessment of cerebral autoregulation with near-infrared spectroscopy: myth or reality? F1000 Res. 2017;6:1615.

    Article  Google Scholar 

  31. Rivera-Lara L, Geocadin R, Zorrilla-Vaca A, Healy R, Radzik BR, Palmisano C, Mirski M, Ziai WC, Hogue C. Validation of near-infrared spectroscopy for monitoring cerebral autoregulation in comatose patients. Neurocrit Care. 2017;27(3):362–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chan B, Aneman A. A prospective, observational study of cerebrovascular autoregulation and its association with delirium following cardiac surgery. Anaesthesia. 2019;74:33. https://doi.org/10.1111/anae.14457.

    Article  CAS  PubMed  Google Scholar 

  33. Mesquida J, Gruartmoner G, Espinal C. Skeletal muscle oxygen saturation (StO2) measured by near-infrared spectroscopy in the critically ill patients. Biomed Res Int. 2013;2013:502194. https://doi.org/10.1155/2013/502194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Taylor DE, Simonson SG. Use of near-infrared spectroscopy to monitor tissue oxygenation. New Horiz. 1996;4(4):420–5.

    CAS  PubMed  Google Scholar 

  35. Bartels SA, Bezemer R, de Vries FJ, Milstein DM, Lima A, Cherpanath TG, van den Meiracker AH, van Bommel J, Heger M, Karemaker JM, Ince C. Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure. Intensive Care Med. 2011;37(4):671–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Crookes BA, Cohn SM, Bloch S, et al. Can near-infrared spectroscopy identify the severity of shock in trauma patients? J Trauma. 2005;58(4):806–16.

    Article  PubMed  Google Scholar 

  37. Bezemer R, Karemaker JM, Klijn E, Martin D, Mitchell K, Grocott M, Heger M, Ince C. Simultaneous multi-depth assessment of tissue oxygen saturation in thenar and forearm using near-infrared spectroscopy during a simple cardiovascular challenge. Crit Care. 2009;13(Suppl 5):S5.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Absalom AR, Scheeren TWL. NIRS during therapeutic hypothermia: cool or hot? Resuscitation. 2013;84:720–1.

    Article  CAS  PubMed  Google Scholar 

  39. Holper L, Mitra S, Bale G, Robertson N, Tachtsidis I. Prediction of brain tissue temperature using near-infrared spectroscopy. Neurophotonics. 2017;4(2):021106. https://doi.org/10.1117/1.NPh.4.2.021106.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Scheeren TWL, Schober P, Schwarte LA. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J Clin Monit Comput. 2012;26:279–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rooke TW, Osmundson PJ. The influence of age, sex, smoking, and diabetes on lower limb transcutaneous oxygen tension in patients with arterial occlusive disease. Arch Intern Med. 1990;150:129–32. https://doi.org/10.1001/archinte.150.1.129.

    Article  CAS  PubMed  Google Scholar 

  42. Gustafsson P, Crenshaw AG, Edmundsson D, Toolanen G, Crnalic S. Muscle oxygenation in Type 1 diabetic and non-diabetic patients with and without chronic compartment syndrome. PLoS One. 2017;12(10):e0186790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tzanis G, Dimopoulos S, Manetos C, Koroboki E, Manios E, Vasileiadis I, Zakopoulos N, Nanas S. Muscle microcirculation alterations and relation to dipping status in newly diagnosed untreated patients with arterial hypertension-a pilot study. Microcirculation. 2017;24(7) https://doi.org/10.1111/micc.12384.

  44. Cem A, Serpil UO, Fevzi T, Murat O, Umit G, Esin E, Pinar U, Sahin S, Hasan K, Cem A. Efficacy of near-infrared spectrometry for monitoring the cerebral effects of severe dilutional anemia. Heart Surg Forum. 2014;17(3):E154–9.

    Article  PubMed  Google Scholar 

  45. Leal-Noval SR, Arellano-Orden V, Muñoz-Gómez M, Cayuela A, Marín-Caballos A, Rincón-Ferrari MD, García-Alfaro C, Amaya-Villar R, Casado-Méndez M, Dusseck R, Murillo-Cabezas F. Red blood cell transfusion guided by near infrared spectroscopy in neurocritically ill patients with moderate or severe anemia: a randomized, controlled trial. J Neurotrauma. 2017;34(17):2553–9.

    Article  PubMed  Google Scholar 

  46. Yuruk K, Bartels SA, Milstein DM, Bezemer R, Biemond BJ, Ince C. Red blood cell transfusions and tissue oxygenation in anemic hematologyoutpatients. Transfusion. 2012;52(3):641–6.

    Article  CAS  PubMed  Google Scholar 

  47. Chiu AS. Application of TR-NIRS in healthy and diseased children during exercise. 2017. UC Irvine. ProQuest ID: Chiu_uci_0030D_14746. Merritt ID: ark:/13030/m5tr0xch.

    Google Scholar 

  48. Mintzer JP, Parvez B, La Gamma EF. Regional tissue oxygen extraction and severity of anemia in very low birth weight neonates: a pilot NIRS analysis. Am J Perinatol. 2018;15:1411. https://doi.org/10.1055/s-0038-1660458.

    Article  Google Scholar 

  49. Saito-Benz M, Sandle ME, Jackson PB, Berry MJ. Blood transfusion for anaemia of prematurity: current practice in Australia and New Zealand. J Paediatr Child Health. 2019;55:433. https://doi.org/10.1111/jpc.14222.

    Article  PubMed  Google Scholar 

  50. Desmond FA, Namachivayam S. Does near-infrared spectroscopy play a role in paediatric intensive care? BJA Educ. 2016;16(8):281–5.

    Article  Google Scholar 

  51. Schramm P, Tzanova I, Hagen F, Berres M, Closhen D, Pestel G, Engelhard K. Cerebral oxygen saturation and cardiac output during anaesthesia in sitting position for neurosurgical procedures: a prospective observational study. Br J Anaesth. 2016;117(4):482–8.

    Article  CAS  PubMed  Google Scholar 

  52. Ranucci M, Isgro G, De la Torre T, et al. Near-infrared spectroscopy correlates with continuous superior vena cava oxygen saturation in paediatric cardiac surgery patients. Paediatr Anaesth. 2008;18:1163–9.

    PubMed  Google Scholar 

  53. Subudhi AW, Dimmen AC, Roach RC. Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. J Appl Physiol (1985). 2007;103(1):177–83.

    Article  CAS  Google Scholar 

  54. Kussman BD, Laussen PC, Benni PB, McGowan FX Jr, McElhinney DB. Cerebral oxygen saturation in children with congenital heart disease and chronic hypoxemia. Anesth Analg. 2017;125(1):234–40.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stéphan A, Laroche S, Davis S. Learning deficits and dysfunctional synaptic plasticity induced by aggregated amyloid deposits in the dentate gyrus are rescued by chronic treatment with indomethacin. Eur J Neurosci. 2003;17(9):1921–7.

    Article  PubMed  Google Scholar 

  56. Yamada N, Nagata H, Sato Y, Tomoyasu M. Effects of propofol or sevoflurane on cerebral regional oxygen saturation (rSO2) during one-lung ventilation. Masui. 2008;57(11):1388–97.

    PubMed  Google Scholar 

  57. Li XM, Li F, Liu ZK, Shao MT. Investigation of one-lung ventilation postoperative cognitive dysfunction and regional cerebral oxygen saturation relations. J Zhejiang Univ Sci B. 2015;16(12):1042–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Végh T, Szatmári S, Juhász M, László I, Vaskó A, Takács I, Szegedi L, Fülesdi B. One-lung ventilation does not result in cerebral desaturation during application of lung protective strategy if normocapnia is maintained. Acta Physiol Hung. 2013;100(2):163–72.

    Article  PubMed  Google Scholar 

  59. Misthos P, Katsaragakis S, Milingos N, Kakaris S, Sepsas E, et al. Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. Eur J Cardiothorac Surg. 2005;27:379–82.

    Article  CAS  PubMed  Google Scholar 

  60. Pedersen LM, Nielsen J, Østergaard M, Nygård E, Nielsen HB. Increased intrathoracic pressure affects cerebral oxygenation following cardiac surgery. Clin Physiol Funct Imaging. 2012;32(5):367–71.

    Article  PubMed  Google Scholar 

  61. Kemerci PU, Demir A, Aydınlı B, Güçlü ÇY, Karadeniz Ü, Çiçek ÖF, Taşoğlu İ, Özgök A. 10 cm H2O PEEP application in laparoscopic surgery and cerebral oxygenation: a comparative study with INVOS and FORESIGHT. Surg Endosc. 2016;30(3):971–8.

    Article  PubMed  Google Scholar 

  62. Ružman T, Mraović B, Šimurina T, Gulam D, Ružman N, Miškulin M. Transcranial cerebral oxymetric monitoring reduces brain hypoxia in obese and elderly patients undergoing general anesthesia for laparoscopic cholecystectomy. Surg Laparosc Endosc Percutan Tech. 2017;27(4):248–52.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernandez, A., Toraman, F., Demir, A. (2020). Changes in Classical Monitoring: Hemodynamic Monitoring, New Devices, NIRS, etc.. In: Granell Gil, M., Şentürk, M. (eds) Anesthesia in Thoracic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-28528-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28528-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28527-2

  • Online ISBN: 978-3-030-28528-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics