Skip to main content

Advertisement

Log in

Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria)

Identification et évaluation des composantes d’écoulement et de stockage d’eau souterraine dans le glacier résiduel rocheux de Schöneben, Chaîne du Niedere Tauern, Alpes orientales (Autriche)

Identificación y evaluación de los componentes de flujo y almacenamiento de agua subterránea de un relicto de glaciar de roca en Schöneben, Niedere Tauern Range, Alpes Orientales (Austria)

(奥地利)阿尔卑斯地区东部Niedere Tauern山脉残留的Schöneben岩石冰川地下水流和储存库的确定和评价

Identificação e avaliação do fluxo das águas subterrâneas e dos componentes de armazenamento do Glaciar Rochoso Schöneben relíquia, Cadeia dos Alpes do Tauern Orientais (Niedere Tauern), Alpes Orientais (Áustria)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

More than 2,600 relict rock glaciers are known in the Austrian Alps but the knowledge of their hydraulic properties is severely limited. The relict Schöneben Rock Glacier (Niedere Tauern Range, Austria), with an extension of 0.17 km2, was investigated based on spring data (2006–2014) and seismic refraction survey. Spring-discharge hydrographs and natural and artificial tracer data suggest a heterogeneous aquifer with a layered internal structure for the relict rock glacier. The discharge behavior exhibits a fast and a delayed flow component. The spring discharge responds to recharge events within a few hours but a mean residence time of several months can also be observed. The internal structure of the rock glacier (up to several tens of meters thick) consists of: an upper blocky layer with a few meters of thickness, which lacks fine-grained sediments; a main middle layer with coarse and finer-grained sediments, allowing for fast flow; and an approximately 10-m-thick basal till layer as the main aquifer body responsible for the base flow. The base-flow component is controlled by (fine) sandy to silty sediments with low hydraulic conductivity and high storage capacity, exhibiting a difference in hydraulic conductivity to the upper layer of about three orders of magnitude. The high storage capacity of relict rock glaciers has an impact on water resources management in alpine catchments and potentially regulates the risk of natural hazards such as floods and related debris flows. Thus, the results highlight the importance of such aquifer systems in alpine catchments.

Résumé

Plus de 2,600 glaciers rocheux résiduels sont répertoriés dans les Alpes autrichiennes, mais la connaissance de leurs propriétés hydrauliques est sérieusement limitée. Le glacier rocheux résiduel de Schöneben (Chaîne du Niedere Tauern, Autriche), de 0.17 km2 d’extension, a été étudié grâce aux données sur les sources (2006–2014) et aux levés de sismique réfraction. Les hydrogrammes des débits des sources et les données de traçage naturel et artificiel suggèrent un aquifère hétérogène, avec une structure interne stratifiée du glacier rocheux résiduel. Le comportement du débit montre une composante d’écoulement rapide et une composante d’écoulement retardé. Le début de la source répond aux évènements de recharge en quelques heures, mais un temps de résidence moyen de plusieurs mois peut aussi être observé. La structure interne du glacier rocheux (jusqu’à plusieurs centaines de mètres d’épaisseur) consiste en: une couche supérieure à blocs de quelques mètres d’épaisseur, dépourvue de sédiments fins; une couche principale intermédiaire, avec des sédiments grossiers à fins, permettant un écoulement rapide; et une couche de base de till d’environ 10 m d’épaisseur, principal corps aquifère responsable de l’écoulement de base. La composante d’écoulement de base est contrôlée par les sédiments finement sableux à silteux avec une conductivité hydraulique faible et une capacité de stockage élevée, présentant une différence de conductivité hydraulique avec la couche supérieure d’environ trois ordres de grandeur. La capacité de stockage élevée des glaciers rocheux résiduels impacte la gestion des ressources en eau dans les bassins alpins et régulent potentiellement l’aléa de risques naturels tels que les inondations et les coulées détritiques associées. Ainsi, les résultats mettent en lumière l’importance de tels systèmes aquifères dans les bassins alpins.

Resumen

En los Alpes austríacos son conocidos más de 2,600 relictos de glaciares de roca, pero el conocimiento de sus propiedades hidráulicas es muy limitado. Se investigó el relicto del glaciar de roca de Schöneben (Niedere Tauern Range, Austria), de una extensión de 0.17 km2, en base a datos de manantiales (2006–2014) y a relevamiento de de refracción sísmica. Los hidrogramas de la descarga de los manantiales y los datos de trazadores naturales y artificiales sugieren un acuífero heterogéneo con una estructura interna en capas para el relicto del glaciar de roca. El comportamiento de descarga exhibe un componente de flujo rápido y retardado. La respuesta en la descarga del manantial a eventos de recarga es de unas pocas horas, pero se observó que el tiempo de residencia es de varios meses. La estructura interna del glaciar de roca (hasta varias decenas de metros de espesor) se compone de: una capa superior del bloque con un par de metros de espesor, que carece de los sedimentos de grano fino; una capa principal intermedia con sedimentos de grano gruesos y finos, lo que permite el flujo rápido; y una capa basal de aproximadamente 10 m de espesor que es el cuerpo principal de acuífero principal y responsable del flujo base. El componente del flujo base está controlado por sedimentos limosos y arenosos finos con baja conductividad hidráulica y alta capacidad de almacenamiento, que presenta una diferencia en la conductividad hidráulica con respecto a la capa superior de alrededor de tres órdenes de magnitud. La elevada capacidad de almacenamiento de los relictos de los glaciares de roca tiene un impacto en la gestión de los recursos hídricos en las cuencas alpinas y potencialmente regula el riesgo de desastres naturales, como inundaciones y flujos de escombros relacionados. Por lo tanto, los resultados ponen de manifiesto la importancia de este tipo de sistemas de acuíferos en cuencas alpinas.

摘要

在奥地利的阿尔卑斯地区已知有2,600多个残留岩石冰川,但对他们的水力特性认识非常有限。(奥地利Niedere Tauern山脉)残留的Schöneben岩石冰川面积0.17 km2,根据泉资料(2006–2014年)及震波折射勘查结果对该冰川进行了研究。泉水排泄流量过程线及天然和人工的示踪剂资料显示,在残留岩石冰川有一个一层内部结构的非均质含水层。排泄显示为一种快速的、延迟的水流成分。泉排泄对几个小时内的补给事件有响应,但平均几个月的滞留时间也可以观察到。岩石冰川(厚度达几十米)的内部结构包括:几米厚的上部块状层,缺少细颗粒的沉积物;主要的中部层,由粗颗粒和较细颗粒的沉积物组成,可以使水流快速流动;大概10米厚的基部冰碛层,是主要的含水层体,是基流的供水源。基流成分受具有低水力传导率和高储存量的(细颗粒的)砂质至粉砂质沉积物控制,显示出其水力传导率与上层大约有三个数量级的差别。残留岩石冰川的高储存量对阿尔卑斯地区流域的水资源管理有影响,并且可调整自然灾害诸如洪水和泥石流的风险。因此,研究结果彰显了阿尔卑斯地区流域此类含水层系统的重要性。

Resumo

Mais de 2,600 glaciares rochosos relíquia são conhecidos nos Alpes Austríacos, mas o conhecimento de suas propriedades hidráulicas é severamente limitado. O Glaciar Rochoso relíquia Schöneben, (Cadeia dos Alpes do Tauern Orientais (Niedere Tauern), Áustria), com uma extensão de 0.17 km2, foi investigado com base nos dados de nascente (2006–2014) e levantamento por refração sísmica. Hidrogramas de descarga de nascente, e dados de traçadores artificiais e naturais sugerem um aquífero heterogêneo com uma estrutura interna em camadas para o glaciar rochoso relíquia. O comportamento da descarga exibe um componente rápido e um atrasado de escoamento. A descarga da nascente responde a eventos de recarga dentro de poucas horas, mas um tempo de residência médio de vários meses também pode ser observado. A estrutura interna do glaciar rochoso (até várias dezenas de metros de espessura) consiste em: uma camada de bloco superior com poucos metros de espessura, o qual carece de sedimentos de granulação fina; uma camada média principal com sedimento de granulação mais fina e grosseira, permitindo um rápido escoamento; e um basal de aproximadamente 10-m de espessura até a camada basal de tilito como o principal corpo do aquífero responsável pelo escoamento da base. O componente do escoamento de base é controlado por sedimentos (fino) arenosos à siltosos com baixa condutividade hidráulica e alta capacidade de armazenamento, exibindo uma diferença em condutividade hidráulica para a camada superior de aproximadamente três ordens de grandeza. A alta capacidade de armazenamento do glaciar rochoso relíquia tem um impacto na gestão dos recursos hídricos em bacias alpinas e regula potencialmente o risco de perigos naturais tais como enchentes e escoamentos de detritos relacionados. Portanto, o resultado ressalta a importância de tal sistema aquífero nas bacias alpinas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ANIP (Austrian Network of Isotopes in Precipitation) (2007) Österreichisches Netzwerk für Isotopen (18O, 2H, 3H) in Niederschlägen und Oberflächengewässern [Austrian network for isotopes (18O, 2H, 3H) in precipitation and surface waters]. Landesministerium, Ämter d. Landesregierung, ARC und Umweltbundesamt, Vienna. Available at http://www.umweltbundesamt.at. Accessed 02 Nov 2015

  • Azócar GF, Brenning A (2010) Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile. Permafrost Periglac 21(1):42–53

    Article  Google Scholar 

  • Baedke SJ, Krothe NC (2001) Derivation of effective hydraulic parameters of a karst aquifer from discharge hydrograph analysis. Water Resour Res 37(1):13–19

    Article  Google Scholar 

  • Ballantyne CK, Schnabel C, Xu S (2009) Exposure dating and reinterpretation of coarse debris accumulations (‘rock glaciers’) in the Cairngorm Mountains, Scotland. J Quat Sci 24:19–31

    Article  Google Scholar 

  • Banerjee B, Gupta SK (1975) The hidden layer problem in seismic refraction work. Geophys Prospect 23:642–652

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309

    Article  Google Scholar 

  • Barsch D (1996) Rock glaciers: indicators for the present and former geoecology in high mountain environments. Springer Series in Physical Environment 16. Springer, Berlin

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York

    Google Scholar 

  • Birk S, Hergarten S (2010) Early recession behaviour of spring hydrographs. J Hydrol 387(1–2):24–32. doi:10.1016/j.jhydrol.2010.03.026

    Article  Google Scholar 

  • Birk S, Liedl R, Sauter M (2004) Identification of localised recharge and conduit flow by combined analysis of hydraulic and physico–chemical spring responses (Urenbrunnen, SW-Germany). J Hydrol 286(1–4):179–193

    Article  Google Scholar 

  • Brenning A (2005) Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of central Chile. Permafrost Periglac 16:231–240

    Article  Google Scholar 

  • Brutsaert W, Nieber JL (1977) Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour Res 13:637–643

    Article  Google Scholar 

  • Campbell DH, Clow DW, Ingersoll GP, Mast MA, Spahr NE, Turk JT (1995) Processes controlling the chemistry of two snowmelt-dominated streams in the Rocky Mountains. Water Resour Res 31(11):2811–2821

    Article  Google Scholar 

  • Clow DW, Schrott L, Wobb R, Campell DH, Torizzo A, Dornblaser M (2003) Ground water occurrence and contributions to streamflow in an alpine catchment, Colorado Front Range. Ground Water 41:937–950

    Article  Google Scholar 

  • Dewandel B, Lachassagne P, Bakalowicz M, Weng P, Al-Malki A (2003) Evaluation of aquifer thickness by analyzing recession hydrographs: application to the Oman ophiolite hard-rock aquifer. J Hydrol 274:248–269

    Article  Google Scholar 

  • Gödel S (1993) Geohydrologie der Blockgletscher im Hochreichhart-Gebiet (Seckauer Tauern, Steiermark) [Hydrogeology of rock glaciers in the Hochreichhart area (Seckauer Tauern Range, Styria)]. MSc Thesis, University of Vienna, Austria

  • Greenhalgh SA (1977) Comments on “The hidden layer problem in seismic refraction work”. Geophys Prospect 25:179–181

    Article  Google Scholar 

  • Haeberli W, Beniston M (1998) Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 27:258–265

    Google Scholar 

  • Haeberli W, Hallet B, Arenson L, Elconin R, Humlum O, Kääb A, Kaufmann V, Ladanyi B, Matsuoka N, Springman S, Vonder Mühll D (2006) Permafrost creep and rock glacier dynamics. Permafrost Periglac 17(3):189–214

    Article  Google Scholar 

  • Harris SA, Pederson DE (1998) Thermal regimes beneath coarse blocky materials. Permafrost Periglac 9:107–120

    Article  Google Scholar 

  • Harrison S, Whalley B, Anderson E (2008) Relict rock glaciers and protalus lobes in the British Isles: implications for late Pleistocene mountain geomorphology and palaeoclimate. J Quat Sci 23:287–304

    Article  Google Scholar 

  • Hausmann H, Krainer K, Brückl E, Ullrich C (2012) Internal structure, ice content and dynamics of Ölgrube and Kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys. Aust J Earth Sci 105(2):12–31

    Google Scholar 

  • Hergarten S, Birk S (2007) A fractal approach to the recession of spring hydrographs. Geophys Res Lett 34:L11401. doi:10.1029/2007GL030097

    Article  Google Scholar 

  • Hergarten S, Winkler G, Birk S (2014) Transferring the concept of minimum energy dissipation from river networks to subsurface flow patterns. Hydrol Earth Syst Sci 18:4277–4288. doi:10.5194/hess-18-4277-2014

  • Hughes PD, Gibbard PL, Woodward JC (2003) Relict rock glaciers as indicators of Mediterranean palaeoclimate during the Last Glacial Maximum (Late Würmian) in northwest Greece. J Quart Sci 18(5):431–440

    Article  Google Scholar 

  • Jasper K, Calanca PL, Gyalistras D, Fuhrer J (2004) Differential impacts of climate change on the hydrology of two alpine river basins. Clim Res 26:113–129

    Article  Google Scholar 

  • Kasnavia T, Vu D, Sabatini DA (1999) Fluorescent dye and media properties affecting sorption and tracer selection. Ground Water 37(3):376–381

    Article  Google Scholar 

  • Kellerer-Pirklbauer A, Lieb KG, Kleinferchner H (2012) A new rock glacier inventory of the Eastern European Alps. Aust J Earth Sci 105(2):78–93

    Google Scholar 

  • Kellerer-Pirklbauer A, Pauritsch M, Morawetz R, Kuehnast B, Schreilechner M, Winkler G (2014) Thickness and internal structure of relict rock glaciers: a challenge for geophysics—examples from two rock glaciers in the Eastern Alps. Geophys Res Abstr 16:EGU201–12581

  • Kellerer-Pirklbauer A, Pauritsch M, Winkler G (2015) Widespread occurrence of ephemeral funnel hoarfrost and related air ventilation in coarse-grained sediments of a relict rock glacier in the Seckauer Tauern Range. Austria Geog Ann A 97(3):453–471. doi:10.1111/geoa.12087

  • Klotz D (1982) Verhalten hydrologischer Tracer in ausgewählten Sanden und Kiesen [Characteristics of hydrological tracers in sand and gravel deposits]. GSF-Ber 290:17–29

    Google Scholar 

  • Kovács A, Perrochet P, Király L, Jeannin P-Y (2005) A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis. J Hydrol 303:152–164

    Article  Google Scholar 

  • Krainer K, Mostler W (2002) Hydrology of active rock glaciers: examples from the Austrian Alps. Arc Antarct Alp Res 34:142–149

    Article  Google Scholar 

  • Krainer K, Ribis M (2012) A rock glacier inventory of the Tyrolean Alps (Austria). Aust J Earth Sci 105(2):32–47

    Google Scholar 

  • Krainer K, Mostler W, Spoetl C (2007) Discharge from active rock glaciers, Austrian Alps: a stable isotope approach. Aust J Earth Sci 100:102–112

    Google Scholar 

  • Krainer K, Bressan D, Dietre B, Haas JN, Hajdas I, Lang K, Mair V, Nickus U, Reidl D, Thies H, Tonidandel D (2014) A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). Quat Res. doi:10.1016/j.yqres.2014.12.005

    Google Scholar 

  • Kresic N (2007) Hydrogeology and groundwater modeling, 2nd edn. CRC, Boca Raton, FL

    Google Scholar 

  • Kresic N, Bonacci O (2010) Spring discharge hydrograph. In: Kresic N, Stevanovic Z (eds) Groundwater hydrology of springs: engineering, theory, management, and sustainability. Elsevier, Amsterdam, pp 129–163

  • Langston G, Bentley LR, Hayashi M, McClymont AF, Pidlisecky A (2011) Internal structure and hydrological functions of an alpine proglacial moraine. Hydrol Process 25:2967–2982. doi:10.1002/hyp.8144

    Google Scholar 

  • Liu FJ, Williams MW, Caine N (2004) Source waters and flow paths in an alpine catchment, Colorado Front Range, United States. Water Resour Res 40(9):W09401. doi:10.1029/2004WR003076

    Article  Google Scholar 

  • Maillet E (1905) Mécanique et physique du globe: essai d’hydraulique souterraine et fluviale [Mechanics and physiques of the world: an essay of subterranean and fluviatile hydraulics]. Hermann, Paris

  • Mair A (2002) Deformation und Ablagerungsraum der Rannachformation, Seckauer Alpen [Deformation and depositional environment of the Rannach formation, Seckauer Alps]. MSc Thesis, University of Graz, Austria

  • McGuire K, McDonnell J (2006) A review and evaluation of catchment transit time modelling. J Hydrol 330:543–563

    Article  Google Scholar 

  • Millar CI, Westfall RD (2008) Rock glaciers and related periglacial landforms in the Sierra Nevada, CA, USA: inventory, distribution and climatic relationship. Quat Int 188:90–104

    Article  Google Scholar 

  • Millar CI, Westfall RD, Delany DL (2013) Thermal and hydrologic attributes of rock glaciers and periglacial talus landforms: Sierra Nevada, California, USA. Quat Int 310:169–180

    Article  Google Scholar 

  • Morgenschweis G (2010) Hydrometrie [Hydrometry]. Springer, Heidelberg, Germany

    Google Scholar 

  • Muir DL, Hayashi M, McClymont AF (2011) Hydrological storage and transmission characteristics of an alpine talus. Hydrol Process 25:2954–2966. doi:10.1002/hyp.8060

    Google Scholar 

  • Nutbrown DA, Downing RA (1976) Normal-mode analysis of the structure of baseflow-recession curves. J Hydrol 30:327–340

    Article  Google Scholar 

  • Onaca AL, Urdea P, Ardelean AC (2013) Internal structure and permafrost characteristics of the rock glaciers of Southern Carpathians (Romania) assessed by geoelectric soundings and thermal monitoring. Geogr Ann A 95:249–266. doi:10.1111/geoa.12014

    Article  Google Scholar 

  • Paasche Ø, Dahl SO, Løvlie R, Nesje A (2007) Rockglacier activity during the last glacial–interglacial transition and Holocene spring snowmelting. Quat Sci Rev 26:793–807

    Article  Google Scholar 

  • Palmer D (1980) The generalized reciprocal method of seismic refraction interpretation. Society of Exploration Geophysicists, Tulsa, OK, 113 pp

  • Putnam AE, Putnam DE (2009) Inactive and relict rock glaciers of the Deboullie Lakes Ecological Reserve, northern Maine, USA. J Quat Sci 24:773–784

    Article  Google Scholar 

  • Rorabaugh MI (1964) Estimating changes in bank storage and ground-water contribution to streamflow. IAHS Publ 63:432–441

    Google Scholar 

  • Roy JW, Hayashi M (2009) Multiple distinct groundwater flow systems of single moraine-talus feature in alpine watershed. J Hydrol 373:139–150

    Article  Google Scholar 

  • Sabatini DA (2000) Sorption and intraparticle diffusion of fluorescent dyes with consolidated aquifer media. Ground Water 38(5):651–656

    Article  Google Scholar 

  • Sahuquillo A, Gómez-Hernández JJ (2003) Comment on “Derivation of effective hydraulic parameters of a karst aquifer from discharge hydrograph analysis” by Baedke SJ and Krothe NC. Water Resour Res 39(6):1152. doi:10.1029/2002WR001472

    Article  Google Scholar 

  • Sauter M (1992) Quantification and forecasting of regional groundwater flow and transport in a karst aquifer (Gallusquelle, Malm, SW Germany). Tübinger Geowissenschaftliche Arbeiten, Reihe C, 13, Universitätsbibliothek, Tübingen, Germany

  • Scharbert S (1980) Die Bösensteingruppe und die Seckauer Tauern [The Bösenstein group and the Seckauer Tauern Range]. In: Oberhauser R, Bauer FK (eds) Der geologisch Aufbau Österreich [The geological structure of Austria]. Springer, Vienna, pp 368–370

    Google Scholar 

  • Scharbert S (1981) Untersuchungen zum Alter des Seckauer Kristallins [Investigations about the age of the Seckauer crystalline]. Mitt Ges Geol Bergbaustud 27:163–188

    Google Scholar 

  • Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogeny. Eclogae Geol Helv 97:93–117

    Article  Google Scholar 

  • Schmöller R (1978) Der Grundwasserleiter im Murboden des Fohnsdorfer Beckens als refraktionsseismisch überschossener Schicht [The aquifer in the “Murboden” of the Fohnsdorf Basin as a hidden layer in refraction seismic data]. Mitt Abt Geol Paläont Bergb Landesmus Joanneum 39:97–108

    Google Scholar 

  • Schmöller R (1982) Some aspects of handling velocity inversion and hidden layer problems in seismic refraction work. Geophys Prospect 30:735–751

    Article  Google Scholar 

  • Schnegg PA (2002) An inexpensive field fluorometer for hydrogeological tracer tests with three tracers and turbidity measurement. In: Bovanegra E, Martinez D, Massone H (eds) XXXII IAH and ALHSUD Congress Groundwater and Human Development, Mar del Plata, Argentina, October 2002

  • Schön J (2011) Physical properties of rocks. Elsevier, Oxford

    Google Scholar 

  • Schwartz F, Zhang H (2003) Fundamentals of groundwater. Wiley, New York

  • Stewart I, Cayan DR, Dettinger MD (2004) Changes in snowmelt runoff timing in western North America under a “business as usual” climate change scenario. Clim Change 6:217–232. doi:10.1023/B:CLIM.0000013702.22656.e8

    Article  Google Scholar 

  • Stichler W, Herrmann A (1983) Application of environmental isotope techniques in water balance studies of small basins. Proc. of the Hamburg Workshop “New Approaches in Water Balance Computations”. IAHS Publ 148, IAHS, Wallingford, UK, pp 93–112

  • Tague C, Grant GE (2009) Groundwater dynamics mediate low-flow response to global warming in snow-dominated alpine regions. Water Resour Res 45:W07421. doi:10.1029/2008wr007179

    Article  Google Scholar 

  • Taucher W (2010) Climatic conditions of six selected sites in the Hohe and Niedere Tauern Range 1961–2006. MSc Thesis, University of Graz, Austria

  • Untersweg T, Proske H (1996) Untersuchungen an einem fossilen Blockgletscher im Hochreichhartgebiet (Niedere Tauern, Steiermark) [Investigations at a relict rock glacier in the Hochreichhart area (Niedere Tauern Range, Styria)]. Grazer Schriften Geogr Raumforschung 33:201–207

    Google Scholar 

  • Untersweg T, Schwendt A (1995) Die Quellen der Blockgletscher in den Niederen Tauern [The rock glacier springs in the Niedere Tauern Range]. Bericht der wasserwirtschaftlichen Planung 78, Amt d. Steiermärkischen Landesregierung, Landesbaudirektion, Graz, Austria

  • Untersweg T, Schwendt A (1996) Blockgletscher und Quellen in den Niederen Tauern [Rock glacier in the Niedere Tauern Range]. Mitte Österr Geol Ges 87:47–55

    Google Scholar 

  • Wels C, Cornett RJ, Lazarete BD (1991) Hydrograph separation: a comparison of geochemical and isotopic tracers. J Hydrol 122:253–274

    Article  Google Scholar 

  • Winkler G, Kellerer-Pirklbauer A, Pauritsch M (2012) Reliktische blockgletscher – grundwasserkörper in alpinen, kristallinen Einzugsgebieten [Relict rock glaciers: groundwater bodies in alpine, crystalline catchments]. Beitr Hydrogeo 59:119–137

    Google Scholar 

  • Zurawek R (2002) Internal structure of a relict rock glacier, Sleza Massif, southwest Poland. Permafr Periglac Process 13:29–42

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the European Regional Development Fund (ERDF) and the Federal Government of Styria. The authors are grateful to the Hydrographic Service of Styria for providing the spring discharge data of the SRG spring (HZB No. 396762). The digital elevation models and the topographic maps were provided by the GIS Service of the federal government of Styria (GIS Steiermark). Water samples (dye tracer, stable isotopes) and charcoal samples (dye tracers) were analysed at JOANNEUM RESEARCH, Dept. of Water Resources and Environmental Analytics. The authors appreciate constructive comments from Victor Bense and an anonymous reviewer and Alan M. MacDonald the associate editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerfried Winkler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPG 436 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, G., Wagner, T., Pauritsch, M. et al. Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria). Hydrogeol J 24, 937–953 (2016). https://doi.org/10.1007/s10040-015-1348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1348-9

Keywords

Navigation