Skip to main content

Advertisement

Log in

Integrated hydrogeological study of a tectonically controlled aquifer system: The Rohia–Sbiba graben, Central Tunisia

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The Rohia–Sbiba graben in Central Tunisia exhibits interesting hydrogeological characteristics with complex aquifer systems encompassing several Cretaceous to Quaternary hydrogeological units. To define the geometrical development of the aquifer units and to give new insights on recharge, mineralization and hydrodynamic processes, an integrated hydrogeological study was conducted. Gravity, electrical data and groundwater physicochemical parameters together with statistical analysis provided detailed information on the aquifer’s geometry and their hydrodynamics and mineralization processes. The tectonic control of the graben sedimentary fill gave thick permeable deposits ensuring high storage capacity. These deposits exhibit complex geometry and record variable conditions of stream-flow, deposition and erosion related to the migration of surface drainage channels. The recharge of this aquifer system is ensured by direct infiltration of meteoric water from surface flows and artificial recharge structures. The groundwater samples exhibit sulfated and calci-magnesian chloride facies. The chemical elements result mainly from the dissolution of evaporitic rocks and tend to accumulate within the detrital aquifer downstream; the shallow carbonated aquifers are disposed to transfer groundwater laterally to the subsided detrital units. The combination of geophysical, hydrochemical and statistical approaches in studying the hydrogeology of these tectonically controlled aquifers provided a comprehensive understanding for developing long-term management of groundwater.

Research highlights

  • Geophysical data and groundwater physicochemical parameters together with statistical analysis were used to decipher the aquifer’s geometry, hydrodynamic and mineralization processes.

  • The tectonic control of the aquifer system is highlighted and discussed.

  • The BMLP and major oxides (CaO and MgO wt%) along the growth laminae may be associated with CaCO3 deposition, reflecting surface precipitation and disequilibrium conditions.

  • Preserved biogenic remains associated with primary features may depict biogenic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Abderbi J and Khattach D 2010 Contribution de la gravimétrie à l’étude de la structure des Hauts Plateaux (Maroc oriental); Bull. Inst. Sci. Rabat, Section Sciences De La Terre 32 19–30.

    Google Scholar 

  • Aghazadeh N, Chitsazan M and Golestan Y 2017 Hydrochemistry and quality assessment of groundwater in the Ardabil area, Iran; Appl. Water Sci. 7(7) 3599–3616.

    Article  Google Scholar 

  • Archambault J, Castany G, Raulais M, Degallier R and Azzouz 1951 Geological Map of Sbiba 1/50000. Edition of the Service géologique de la direction des travaux publics de la Tunisie.

  • Ayadi Y, Redhaounia B, Mokadem N, Karim Z, Dhaoui M and Hamed Y 2018a Hydro-geophysical and geochemical studies of the aquifer systems in El Kef region (Northwestern Tunisia); Carbonate. Evaporite. 34(4) 1391–1413.

    Article  Google Scholar 

  • Ayadi Y, Mokadem N, Besser H, Redhaounia B, Khelifi F, Harabi S, Nasri T and Hamed Y 2018b Statistical and geochemical assessment of groundwater quality in Teboursouk area (Northwestern Tunisian Atlas); Environ. Earth Sci. 77(9) 349.

    Article  Google Scholar 

  • Bankey V and Kleinkopf M D 1988 Bouguer gravity anomaly map and four derivative maps of Idaho, no. 978.

  • Ben Alaya M, Zemni T, Mamou A and Zargouni F 2014 Acquisition de salinité et qualité des eaux d’une nappe profonde en Tunisie: Approche statistique et géochimique; Hydrol. Sci. J. 59(2) 395–419.

    Article  Google Scholar 

  • Ben Ammar S, Mekni A, Upton K, Ó Dochartaigh B É and Bellwood-Howard I 2018 Africa Groundwater Atlas: Hydrogeology of Tunisia; British Geological Survey.

  • Ben Ferjani A, Burollet P F and Mejri F 1990 Petroleum geology of Tunisia; Entreprise Tunisienne d'Activités Pétrolières, Tunis, 194p.

  • Ben Haj Ali M, Maamri R and M’hadhbi M 2002 Geological Map of Rohia–Jebel Barbrou 1/50000; Edition of the Service Géologique, ONM, Tunisia.

  • Blakely R 1995 Potential theory in gravity and magnetic applications; Cambridge University Press, New York, 441p.

    Book  Google Scholar 

  • Blakely R J and Simpson R W 1986 Approximating edges of source bodies from magnetic or gravity anomalies; Geophysics 51 1494–1498.

  • Boukadi N 1994 Structuration de l’Atlas de Tunisie, signification géométrique et cinématique des nœuds et des zones d’interférences structurales au contact de grands couloirs tectoniques; Doctoral dissertation; Univ. Tunis I I 249p.

    Google Scholar 

  • Boukadi N, El Ayeb S and Kharbachi S 1996 Analyse de la fracturation des calcaires yprésiens en Tunisie: l’exemple de jebel Ousselat; Bull. Soc. Géol. France 171(3) 309–317.

    Article  Google Scholar 

  • Castany G and Degallier R 1956 Notice explicative de carte géologique 1/50.000 de Sbiba (feuille no. 69); Service des Mines, de l’Industrie et de l’Energie. Tunis, 24p.

  • Chaibi S, Aydi W and Chalbaoui M 2013 Hydrogeological Study of the Aquifer System in Central Tunisia: New System Structuring of Horchane Aquifers; J. Water Res. Protect. 5 502–510.

    Article  Google Scholar 

  • Chihi L 1995 Les fossés néogènes à quaternaires de la Tunisie et de la mer pélagienne: Leur signification dans le cadre géodynamique de la méditerranée centrale; Doctoral dissertation; Univ. Tunis I I 324p.

    Google Scholar 

  • Coetsiers M and Walraevens K 2006 Chemical characterization of the Neogene Aquifer, Belgium; Hydrogeol. J. 14(8) 1556–1568.

    Article  Google Scholar 

  • Cordell L 1979 Gravimetric expression of graben faulting in Santa Fe Country and the Espanola basin, New Mexico; In: Guidebook to Santa Fe Country (ed.) Ingersoll R V, New Mexico geological society guidebook, 30th field conference, pp. 59–64.

  • CRDA 2008 Annual report of the Commissariat Régional au Développement Agricole de Kasserine 2007–2008; Ministry of Agriculture, Tunisia.

  • Davis J C 1986 Statistics and Data Analysis in Geology; Wiley, New York, 647p.

    Google Scholar 

  • DGRE 2008 Annuaire de l’exploitation des nappes profondes de l’année 2008; Technical Report, DGRE, Tunis, 210p.

  • Dhahri F and Boukadi N 2010 The evolution of pre-existing structures during the tectonic inversion process of the Atlas chain of Tunisia; J. Afr. Earth Sci. 56 139–149.

    Article  Google Scholar 

  • Dhahri F, Rabhi M and Boukadi N 2007 Méthode d’analyse des systèmes de fractures: Cas des calcaires yprésiens des structures de Jebil et Ousselet (Tunisie Centrale); Note Serv Géol. Tunisie. 75 5–12.

    Google Scholar 

  • Dhahri F, Tanfous D, Gabtni H and Boukadi N 2015 Structural and geodynamic study in central Tunisia using field and geophysical data: New structural interpretation of the N–S axis and associated Atlassic structures; Int. J. Earth Sci. (Geol. Rundsch) 104(7) 1819–1835.

  • Dlala M 1984 Tectonique récente et microtectonique de la région Kasserine (Tunisie centrale); Dissertation; Univ, Montpellier, 138p.

    Google Scholar 

  • Farhat B, Benassi R, Jallouli Ch and Ben Mammou A 2010 Contribution de la gravimétrie à l’étude de la structure de la plaine de Mornag (Nord-Est de la Tunisie): Implications hydrogéologiques; Hydrol. Sci. J. 55(8) 1396–1404.

    Article  Google Scholar 

  • Gabtni H and Gouasmia M 2013 Joint evaluation of gravity, electrical, and magnetotelluric methods for geothermal potential of fractured Aptian reefal carbonates in the Hmaima–El Gara area (Oued Serrat basin, Central-Western Tunisia); Arab. J. Geosci. 6(5) 1569–1579.

    Article  Google Scholar 

  • Gabtni H, Alyahyaoui S, Jallouli C, Hasni W and Mickus K L 2012 Gravity and Seismic Reflection Imaging of a Deep Aquifer in an Arid Region: Case History from the Jeffara Basin, Southeastern Tunisia; J. Afr. Earth Sci. 66 85–97.

    Article  Google Scholar 

  • Garrels R and Mackenzie F 1967 Origin of the chemical compositions of some springs and lakes; In: Equilibrium concepts in natural water systems (ed.) Ground R F, American Chemical Society Publications, Washington.

  • Geosoft Inc. 2005 Montaj MAGMAP Filtering Tutorial, www.geosoft.com.

  • Gouasmia M, Gasmi M, Mhamdi A, Bouri S and Ben Dhia H 2006 Prospection géoélectrique pour l’étude de l’aquifère thermal des calcaires récifaux, Hmeïma–Boujabeur (Tunisie Centre Ouest); C. r. Acad. Sci. 338 1219–1227.

    Google Scholar 

  • Gouasmia M, Khorchani H, Mhamdi A, Dhahri F and Soussi M 2018 Hydrogeological characterization of a carbonate aquifer using geophysical and geochemical approach: Case of the Krachoua Formation in Tataouine area, Southern Tunisia; Arab. J. Geosci. 11(24) 786.

    Article  Google Scholar 

  • Grandis H 2014 Simulation of 3D gravity anomaly of thin coal layer in sedimentary environment and its delineation; Int. J. Tomogr. Simulation 26(2) 1–11.

    Google Scholar 

  • Handayani L, Wardhana D D, Hartanto P, Delinom R, Bakti H and Lubis R F 2018 Gravity survey of groundwater characterization at Labuan Basin; In: IOP Conference Series: Earth and Environmental Science, IOP Publishing, 118(1) 12–15.

  • Hassen I, Milnes E, Gibson H and Bouhlila R 2019 Impact of groundwater flow across tectonic aquifer compartments in a Miocene sandstone aquifer: Three-dimensional hydrogeological modeling of the Kasserine aquifer system in central Tunisia and northeastern Algeria; Hydrogeol. J. 27(4) 1345–1361.

    Article  Google Scholar 

  • Houatmia F, Khomsi S, Mlayah A and Bédir M 2016 Basin structure and water quality of the Oligocene aquifer in the Sebkhet El Behira basin (central Tunisia); Hydrol. Sci. J. 61(5) 868–880.

    Google Scholar 

  • Imanishi Y, Kokubo K and Tatehata H 2006 Efect of underground water on gravity observation at Matsushiro, Japan; J. Geodyn. 41(1–3) 221–226.

    Article  Google Scholar 

  • Kamel S 2011 Salinization origin and hydrogeochemical behavior of the Djerid oasis water table aquifer (southern Tunisia); Arab. J. Geosci. 6(6) 2103–2117.

    Article  Google Scholar 

  • Karroum M, El Mandour A, Khattach D, Cassas A, Himi M, Rochdane S, Laftouhi N and Khalila N 2014 Fonctionnement hydrogéologique du bassin de la Bahira (Maroc central): Apport de l’analyse des données géologiques et gravimétriques; Canad. J. Earth Sc. 51(5) 517–526.

    Article  Google Scholar 

  • Kumar M, Kumari K, Singh U K and Ramanathan A L 2009 Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: Conventional graphical and multivariate statistical approach; Environ. Geol. 57(4) 873–884.

    Article  Google Scholar 

  • M’rabet A, Mejri F, Burollet P F, Memmi L, Chandoul H 1995 Catalog of type sections in Tunisia: Cetaceous; ETAP, Tunisia 8A, 123p.

  • Mhamdi A, Gouasmia M, Gasmi M, Bouri S and Ben Dhia H 2006 Evaluation de la qualité de l’eau par application de la méthode géoélectrique: Exemple de la plaine d’El Mida-Gabes Nord (Sud tunisien); C. R. Geosci. 338(16) 1228–1239.

    Article  Google Scholar 

  • Mhamdi A, Dhahri F, Gouasmia M, Inoubli N, Soussi M and Ben Dhia H 2013 Groundwater investigation in the southern part of Gabes using resistivity sounding, southern Tunisia; Arab. J. Geosci. 6(2) 601–614.

    Article  Google Scholar 

  • Mhamdi A, Dhahri F, Gouasmia M, Moumni L and Soussi M 2015 Groundwater salinization survey of the Upper Cretaceous–Miocene Complex terminal aquifer in the Sabaa Biar area of southwestern; J. Afr. Earth Sci. 112(2015) 83–92.

    Article  Google Scholar 

  • Mohamed E A and Worden R H 2006 Groundwater compartmentalisation: A geochemical analysis of the structural controls on the subdivision of a major aquifer, the Sherwood Sandstone, Merseyside, UK; Hydrol. Earth Syst. Sci. 10 49–64.

    Article  Google Scholar 

  • Mokadem N, Demdoum A, Hamed Y, Bouri S, Hadji R, Boyce A, Laouar R and Saad A 2016 Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system: Northern Gafsa basin (Central Tunisia); J. Afr. Earth Sci. 114 174–191.

    Article  Google Scholar 

  • Moral F, Cruz-Sanjulia J J and Olias M 2008 Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera, southern Spain); J. Hydrol. 360(1–4) 281–296.

    Article  Google Scholar 

  • Morelli C 1976 Modern standards for gravity surveys; Geophysics 41 1051.

    Article  Google Scholar 

  • Murty B and Raghavan V 2002 The gravity method in groundwater exploration in crystalline rocks: A study in the peninsular granitic region of Hyderabad, India; Hydrogeol. J. 10(2) 307–321.

    Article  Google Scholar 

  • Naudet V, Lazzari M, Perrone A, Loperte A, Piscitelli S and Lapenna V 2008 Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, southern Italy); Engineer. Geol. 98 156–157.

    Article  Google Scholar 

  • Odeh T, Salameh E, Schirmer M and Strauch G 2008 Structural control of groundwater flow regimes and groundwater chemistry along the lower reaches of the Zerka River, West Jordan, using remote sensing, GIS, and field methods; Environ. Geol. 58(8) 1797–1810.

    Article  Google Scholar 

  • Oxtobee J P and Novakowski K 2002 A field investigation of groundwater/surface water interaction in a fractured bedrock environment; J. Hydrol. 269(3–4) 169–193.

    Article  Google Scholar 

  • Parasnis D S 1997 Principles of applied Geophysics; Chapman and Hall, Fifth edition.

  • Parkhurst D L and Appelo C A J 2013 Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations; U.S. Geological Survey.

  • Piper A M 1944 A graphic procedure in the geochemical interpretation of water-analyses; Eos Trans. Am. Geophys. Union 25(6) 914–928.

    Article  Google Scholar 

  • Rabeh T, Bedair S and Abdel Zaher M 2018 Structural control of hydrogeological aquifers in the Bahariya Oasis, Western Desert, Egypt; Geosci. J. 22(1) 145–154.

    Article  Google Scholar 

  • Sasaki Y 1992 Resolution of resistivity tomography inferred from numerical simulation; Geophys. Prospect. 40 453–464.

    Article  Google Scholar 

  • Selim E S, Abdel-raouf O and Mesalam M 2016 Implementation of magnetic, gravity and resistivity data in identifying groundwater occurrences in El Qaa Plain area, Southern Sinai, Egypt; J. Asian Earth Sci. 128 1–26.

    Article  Google Scholar 

  • Sikandar P, Bakhsh A, Arshad M and Rana T 2010 The use of vertical electrical sounding resistivity method for the location of low salinity groundwater for irrigation in Chaj and Rachna Doabs; Environ. Earth Sci. 60(5) 1113–1129.

    Article  Google Scholar 

  • Simler R 2009 Diagrammes, Laboratoire d’Hydrogéologie d’Avignon, Avignon.

  • Spector A and Grant F S 1970 Statistical models for interpreting aeromagnetic data; Geophysics 35 293–302.

    Article  Google Scholar 

  • Sree Devi P D, Srinivasulu S and Raju K K 2001 Delineation of groundwater potential zones and electrical studies for groundwater exploration; Environ. Geol. 40 1252–1264.

    Article  Google Scholar 

  • Store H, Storz W and Jacobs F 2000 Electrical resistivity tomography to investigate geological structures of Earth’s upper crust; Geophys. Prospect. 48 455–471.

    Article  Google Scholar 

  • Talwani M and Kessinger W 2003 Exploration Geophysics; Encyclopedia of Physical Science and Technology (3rd edn), Academic Press, pp. 709–726.

  • Ugada U, Ibe K, Akaolisa C Z and Opara I A 2014 Hydrogeophysical evaluation of aquifer hydraulic characteristics using surface geophysical data: A case study of Umuahia and environs, Southeastern Nigeria; Arab. J. Geosci. 7(2014) 5397–5408.

    Article  Google Scholar 

  • Van N R G and Cook K L 1966 Interpretation of resistivity data, U.S. Gov. 499p.

Download references

Acknowledgements

The authors thank Dr Dipankar Saha the Associate Editor of JESS for handling the manuscript and the anonymous reviewers for their helpful and constructive comments that helped us to improve this work. We also thank the Regional Commissariat for the Agricultural Development of Kasserine, Tunisia, for their collaboration in piezometric measurements and chemical analysis.

Author information

Authors and Affiliations

Authors

Contributions

Gouasmia M and Dhahri F conceived the idea of this study and were in-charge of overall direction and planning. Gouasmia M performed the chemical and statistical analysis and geoelectrical survey with the contribution of Salhi I. Dhahri F contributed to the fieldwork and mapping and to draft the manuscript. Mhamdi A contributed to the interpretation and discussion of geoelectrical data. Gabtni H helped in the processing and interpretation of gravity data. Soussi M contributed to the discussion of the final manuscript.

Corresponding author

Correspondence to Mouez Gouasmia.

Additional information

Communicated by Dipankar Saha

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouasmia, M., Dhahri, F., Abdelkader, M. et al. Integrated hydrogeological study of a tectonically controlled aquifer system: The Rohia–Sbiba graben, Central Tunisia. J Earth Syst Sci 130, 221 (2021). https://doi.org/10.1007/s12040-021-01718-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01718-8

Keywords

Navigation