Skip to main content
Log in

Sclerophyllous Forest Tree Growth Under the Influence of a Historic Megadrought in the Mediterranean Ecoregion of Chile

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The Mediterranean-type Ecosystems of Central Chile is one of the most threatened regions in South America by global change, particularly evidenced by the historical megadrought that has occurred in central Chile since 2010. The sclerophyllous forest stands out, whose history and relationship with drought conditions has been little studied. Cryptocarya alba and Beilschmiedia miersii (Lauraceae), two large endemic trees, represent an opportunity to analyze the incidence of intense droughts in the growth of sclerophyllous forests by analyzing their tree rings. Here, we considered > 400 trees from nineteen populations of C. alba and B. miersii growing across a latitudinal gradient (32°–35° S). To study the influence of local and large-scale climatic variability on tree growth, we first grouped the sites by species and explored the relationships between tree-growth patterns of C. alba and B. miersii with temperature, precipitation, and climate water deficit (CWD). Second, we performed Principal Component Analysis to detect common modes of variability and to explore relationships between growth patterns and their relationship to Palmer Drought Severity Index (PDSI), ENSO and SAM indices. We detected a breaking point as of 2002 at regional level, where a persistent and pronounced decrease in tree growth occurred, mainly influenced by the increase in CWD and the decrease in winter-spring rainfall. In addition, a positive (negative) relationship was showed between PC1 growth-PDSI and PC1 growth-ENSO (growth-SAM), that is, growth increases (decreases) in the same direction as PDSI and ENSO (SAM). Despite the fact that sclerophyllous populations are highly resistant to drought events, we suggest that the sclerophyllous populations studied here experienced a generalized growth decline, and possibly the natural dynamics of their forests have been altered, mainly due to the accumulating effects of the unprecedented drought since 2010.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci Data 5:1–12.

    Article  Google Scholar 

  • Abrantes J, Campelo F, Garcia-Gonzalez I, Nabais C. 2013. Environmental control of vessel traits in Quercus ilex under Mediterranean climate: relating xylem anatomy to function. Trees-Structure Funct 27:655–662.

    Article  Google Scholar 

  • Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD. 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat Ecol Evol 1:1285–1291.

    Article  PubMed  Google Scholar 

  • Allen CD, Breshears DD, McDowell NG. 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:1–55.

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EHT. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684.

    Article  Google Scholar 

  • Altieri S, Mereu S, Cherubini P, Castaldi S, Sirignano C, Lubritto C, Battipaglia G. 2015. Tree-ring carbon and oxygen isotopes indicate different water use strategies in three Mediterranean shrubs at Capo Caccia (Sardinia, Italy). Trees 29:1593–1603.

    Article  CAS  Google Scholar 

  • Armesto J, Villagrán C, Arroyo MK. 1995. Ecología de los bosques nativos. Editor Univ Santiago Chile.

  • Arroyo MTK, Marquet PA, Marticorena C, Cavieres LA, Squeo FA, Simonetti Zambelli JA, Rozzi R, Massardo F. 2006. El hotspot chileno, prioridad mundial para la conservación. Diversidad de ecosistemas, ecosistemas terrestres.

  • Barría P, Chadwick C, Ocampo-Melgar A, Galleguillos M, Garreaud R, Díaz-Vasconcellos R, Poblete D, Rubio-Álvarez E, Poblete-Caballero D. 2021. Water management or megadrought: what caused the Chilean Aculeo Lake drying? Reg Environ Chang 21:1–15.

    Article  Google Scholar 

  • Barria P, Rojas M, Moraga P, Muñoz A, Bozkurt D, Alvarez-Garreton C. 2019. Anthropocene and streamflow: Long-term perspective of streamflow variability and water rights. Elem Sci Anth 7.

  • Battipaglia G, De Micco V, Brand WA, Saurer M, Aronne G, Linke P, Cherubini P. 2014. Drought impact on water use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy). Plant Cell Environ 37:382–391.

    Article  CAS  PubMed  Google Scholar 

  • Bernaards CA, Jennrich RI. 2005. Gradient Projection Algorithms and Software for Arbitrary Rotation Criteria in Factor Analysis. Educ Psychol Meas 65:676–696. https://doi.org/10.1177/0013164404272507.

    Article  Google Scholar 

  • Bigiarini-Zambrano F. 2021. Four decades of satellite data for agricultural drought monitoring throughout the growing season in Central Chile.

  • Biondi F, Qeadan F. 2008. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Res 64:81–96.

    Article  Google Scholar 

  • Boisier JP, Alvarez-Garretón C, Cordero RR, Damiani A, Gallardo L, Garreaud RD, Lambert F, Ramallo C, Rojas M, Rondanelli R. 2018. Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elem Sci Anth 6.

  • Bozkurt D, Rojas M, Boisier JP, Valdivieso J. 2018. Projected hydroclimate changes over Andean basins in central Chile from downscaled CMIP5 models under the low and high emission scenarios. Clim Change 150:131–147.

    Article  Google Scholar 

  • Brito-Rozas E, Flores-Toro L. 2014. Structure and dynamics in North Belloto forests (Beilschmiedia miersii) in Cordillera El Melón, Valparaíso Region, Chile. Bosque 35:13–21.

    Article  Google Scholar 

  • Cailleret M, Jansen S, Robert EMR, Desoto L, Aakala T, Antos JA, Beikircher B, Bigler C, Bugmann H, Caccianiga M. 2017. A synthesis of radial growth patterns preceding tree mortality. Glob Chang Biol 23:1675–1690.

    Article  PubMed  Google Scholar 

  • Camarero JJ, Gazol A, Sangüesa-Barreda G, Oliva J, Vicente-Serrano SM. 2015. To die or not to die: early warnings of tree dieback in response to a severe drought. J Ecol 103:44–57.

    Article  CAS  Google Scholar 

  • Campelo F, Nabais C, Freitas H, Gutierrez E. 2007. Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Ann for Sci 64:229–238.

    Article  Google Scholar 

  • Camus P, Jaksic F. 2020. La extraordinaria sequía de 1924: Crisis socio-ecológica e irrupción del poder militar en Chile. Rev Geogr Norte Gd:397–416.

  • Colangelo M, Camarero JJ, Battipaglia G, Borghetti M, De Micco V, Gentilesca T, Ripullone F. 2017. A multi-proxy assessment of dieback causes in a Mediterranean oak species. Tree Physiol 37:617–631.

    Article  CAS  PubMed  Google Scholar 

  • Cook BI, Anchukaitis KJ, Touchan R, Meko DM, Cook ER. 2016. Spatiotemporal drought variability in the Mediterranean over the last 900 years. J Geophys Res Atmos 121:2060–2074.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook ER, Briffa K, Shiyatov S, Mazepa V. 1990. Tree-ring standardization and growth-trend estimation. Methods dendrochronology Appl Environ Sci:104–23.

  • CR2. 2020. Atlas Sudamericano de Sequías South American Drought Atlas (SADA) Período 1400–2000 AD. Cent Clim Resil Res. https://www.cr2.cl/datos-dendro-sada/

  • David TS, Henriques MO, Kurz-Besson C, Nunes J, Valente F, Vaz M, Pereira JS, Siegwolf R, Chaves MM, Gazarini LC. 2007. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol 27:793–803.

    Article  CAS  PubMed  Google Scholar 

  • Donoso C. 1982. Reseña ecológica de los bosques mediterráneos de Chile. Bosque 4:117–146.

    Article  Google Scholar 

  • Dorado-Liñán I, Zorita E, Martínez-Sancho E, Gea-Izquierdo G, Di Filippo A, Gutiérrez E, Levanic T, Piovesan G, Vacchiano G, Zang C. 2017. Large-scale atmospheric circulation enhances the Mediterranean East-West tree growth contrast at rear-edge deciduous forests. Agric for Meteorol 239:86–95.

    Article  Google Scholar 

  • Duran-Llacer I, Munizaga J, Arumí JL, Ruybal C, Aguayo M, Sáez-Carrillo K, Arriagada L, Rojas O. 2020. Lessons to Be Learned: Groundwater Depletion in Chile’s Ligua and Petorca Watersheds through an Interdisciplinary Approach. Water 12:2446.

    Article  Google Scholar 

  • Estay SA, Chávez RO, Rocco R, Gutiérrez AG. 2019. Quantifying massive outbreaks of the defoliator moth Ormiscodes amphimone in deciduous Nothofagus-dominated southern forests using remote sensing time series analysis. J Appl Entomol 143:787–796.

    Article  Google Scholar 

  • Fernández A, Schumacher V, Ciocca I, Rifo A, Muñoz AA, Justino F. 2021. Validation of a 9-km WRF dynamical downscaling of temperature and precipitation for the period 1980–2005 over Central South Chile. Theor Appl Climatol 143:361–378.

    Article  Google Scholar 

  • Di Filippo A, Alessandrini A, Biondi F, Blasi S, Portoghesi L, Piovesan G. 2010. Climate change and oak growth decline: Dendroecology and stand productivity of a Turkey oak (Quercus cerris L.) old stored coppice in Central Italy. Ann for Sci 67:706.

    Article  Google Scholar 

  • Fritts HC. 1976. Characteristics of tree rings as predictors of climate. Abstr Pap Am Chem Soc 172:30.

    Google Scholar 

  • Gajardo R. 1994. La vegetación natural de Chile. Clasif y Distrib geográfica Editor Univ Santiago, Chile 33.

  • Garreaud R, Alvarez-Garreton C, Barichivich J, Boisier JP, Christie D, Galleguillos M, LeQuesne C, McPhee J, Zambrano M. 2017. The 2010–2015 mega drought in Central Chile: Impacts on regional hydroclimate and vegetation. Hydrol Earth Syst Sci:in review.

  • Garreaud RD, Boisier JP, Rondanelli R, Montecinos A, Sepúlveda HH, Veloso-Aguila D. 2020. The central Chile mega drought (2010–2018): a climate dynamics perspective. Int J Climatol 40:421–439.

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J. 2009. Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195.

    Article  Google Scholar 

  • Gaylord ML, Kolb TE, Pockman WT, Plaut JA, Yepez EA, Macalady AK, Pangle RE, McDowell NG. 2013. Drought predisposes piñon–juniper woodlands to insect attacks and mortality. New Phytol 198:567–578.

    Article  CAS  PubMed  Google Scholar 

  • Gea-Izquierdo G, Cañellas I. 2014. Local climate forces instability in long-term productivity of a Mediterranean oak along climatic gradients. Ecosystems 17:228–241.

    Article  Google Scholar 

  • Gea-Izquierdo G, Cherubini P, Cañellas I. 2011. Tree-rings reflect the impact of climate change on Quercus ilex L. along a temperature gradient in Spain over the last 100 years. For Ecol Manage 262:1807–1816.

    Article  Google Scholar 

  • Gea-Izquierdo G, Martín-Benito D, Cherubini P, Isabel C. 2009. Climate-growth variability in Quercus ilex L. west Iberian open woodlands of different stand density. Ann for Sci 66:802.

    Article  Google Scholar 

  • Gentilesca T, Camarero JJ, Colangelo M, Nole A, Ripullone F. 2017. Drought-induced oak decline in the western Mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. iForest-Biogeosciences for 10:796.

    Article  Google Scholar 

  • González-Reyes A. 2020. KLIMA_trees. GitHub. https://github.com/lonkotrewa/KLIMA_trees

  • Granda E, Gazol A, Camarero JJ. 2018. Functional diversity differently shapes growth resilience to drought for co-existing pine species. J Veg Sci 29:265–275.

    Article  Google Scholar 

  • Greenwood S, Ruiz-Benito P, Martínez-Vilalta J, Lloret F, Kitzberger T, Allen CD, Fensham R, Laughlin DC, Kattge J, Bönisch G. 2017. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol Lett 20:539–553.

    Article  PubMed  Google Scholar 

  • Grissino-Mayer HD. 2001. Evaluating Crossdating Accuracy: A Manual and Tutorial for the Computer Program COFECHA. Tree-Ring Res 57:205–221.

    Google Scholar 

  • Guerrero F, Hernández C, Toledo M, Espinoza L, Carrasco Y, Arriagada A, Muñoz A, Taborga L, Bergmann J, Carmona C. 2021. Leaf Thermal and Chemical Properties as Natural Drivers of Plant Flammability of Native and Exotic Tree Species of the Valparaíso Region, Chile. Int J Environ Res Public Health 18:7191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haavik LJ, Billings SA, Guldin JM, Stephen FM. 2015. Emergent insects, pathogens and drought shape changing patterns in oak decline in North America and Europe. For Ecol Manage 354:190–205.

    Article  Google Scholar 

  • Henley BJ, Gergis J, Karoly DJ, Power S, Kennedy J, Folland CK. 2015. A tripole index for the interdecadal Pacific oscillation. Clim Dyn 45:3077–3090.

    Article  Google Scholar 

  • Hollander M, Wolfe DA. 1973. Kruskal-Wallis: a distribution-free test. In: Nonparametric Statistical Methods. pp 114–37.

  • Holmes RL, Adams RK, Fritts HC. 1986. Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin with procedures used in the chronology development work including users manuals for computer programs COFECHA and ARSTAN.

  • Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC, Smith TM, Thorne PW, Woodruff SD, Zhang H-M. 2015. Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons. J Clim 28:911–930.

    Article  Google Scholar 

  • Konter O, Büntgen U, Carrer M, Timonen M, Esper J. 2016. Climate signal age effects in boreal tree-rings: Lessons to be learned for paleoclimatic reconstructions. Quat Sci Rev 142:164–172.

    Article  Google Scholar 

  • Kurz-Besson CB, Lousada JL, Gaspar MJ, Correia IE, David TS, Soares PMM, Cardoso RM, Russo A, Varino F, Mériaux C. 2016. Effects of recent minimum temperature and water deficit increases on Pinus pinaster radial growth and wood density in southern Portugal. Front Plant Sci 7:1170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsson L. 2014. CooRecorder and Cdendro programs of the CooRecorder/Cdendro package version 7.7.

  • Lebourgeois F, Mérian P, Courdier F, Ladier J, Dreyfus P. 2012. Instability of climate signal in tree-ring width in Mediterranean mountains: a multi-species analysis. Trees 26:715–729.

    Article  Google Scholar 

  • Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodriguez-Cortina R. 2009. Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Glob Chang Biol 15:2163–2175.

    Article  Google Scholar 

  • Linares JC, Camarero JJ. 2012. From pattern to process: linking intrinsic water-use efficiency to drought-induced forest decline. Glob Chang Biol 18:1000–1015.

    Article  Google Scholar 

  • Marshall GJ. 2003. Trends in the southern annular mode from observations and reanalyses. J Clim 16:4134–4143.

    Article  Google Scholar 

  • Martin-Benito D, Beeckman H, Canellas I. 2013. Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest. Eur J for Res 132:33–45.

    Article  Google Scholar 

  • Maseyk K, Hemming D, Angert A, Leavitt SW, Yakir D. 2011. Increase in water-use efficiency and underlying processes in pine forests across a precipitation gradient in the dry Mediterranean region over the past 30 years. Oecologia 167:573–585.

    Article  PubMed  Google Scholar 

  • Matskovsky V, Venegas-González A, Garreaud R, Roig FA, Gutiérrez AG, Muñoz AA, Le Quesne C, Klock K, Canales C. 2021. Tree growth decline as a response to projected climate change in the 21st century in Mediterranean mountain forests of Chile. Glob Planet Change 198:103406.

    Article  Google Scholar 

  • McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, Hurtt GC, Jackson RB, Johnson DJ, Kueppers L, Lichstein JW, Ogle K, Poulter B, Pugh TAM, Seidl R, Turner MG, Uriarte M, Walker AP, Xu C. 2020. Pervasive shifts in forest dynamics in a changing world. Science (80- ) 368.

  • Miranda A, Altamirano A, Cayuela L, Lara A, González M. 2016. Native forest loss in the Chilean biodiversity hotspot: revealing the evidence. Reg Environ Chang:1–13.

  • Miranda A, Lara A, Altamirano A, Di Bella C, González ME, Camarero JJ. 2020. Forest browning trends in response to drought in a highly threatened mediterranean landscape of South America. Ecol Indic 115:106401.

    Article  Google Scholar 

  • Morales MS, Cook ER, Barichivich J, Christie DA, Villalba R, LeQuesne C, Srur AM, Ferrero ME, González-Reyes Á, Couvreux F. 2020. Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proc Natl Acad Sci 117:16816–16823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muggeo VMR. 2008. Segmented: an R package to fit regression models with broken-line relationships. R News 8:20–25.

    Google Scholar 

  • Muñoz AA, Barichivich J, Christie DA, Dorigo W, Sauchyn D, González-Reyes Á, Villalba R, Lara A, Riquelme N, González ME. 2014. Patterns and drivers of A raucaria araucana forest growth along a biophysical gradient in the northern P atagonian A ndes: Linking tree rings with satellite observations of soil moisture. Austral Ecol 39:158–169.

    Article  Google Scholar 

  • Muñoz AA, González-Reyes A, Lara A, Sauchyn D, Christie D, Puchi P, Urrutia-Jalabert R, Toledo-Guerrero I, Aguilera-Betti I, Mundo I. 2016. Streamflow variability in the Chilean Temperate-Mediterranean climate transition (35° S–42° S) during the last 400 years inferred from tree-ring records. Clim Dyn:1–16.

  • Muñoz AA, Klock-Barría K, Alvarez-Garreton C, Aguilera-Betti I, González-Reyes Á, Lastra JA, Chávez RO, Barría P, Christie D, Rojas-Badilla M. 2020. Water crisis in Petorca Basin, Chile: The combined effects of a mega-drought and water management. Water 12:648.

    Article  Google Scholar 

  • Navarro-Cerrillo RM, Sarmoum M, Gazol A, Abdoun F, Camarero JJ. 2019. The decline of Algerian Cedrus atlantica forests is driven by a climate shift towards drier conditions. Dendrochronologia 55:60–70.

    Article  Google Scholar 

  • Negron JF, McMillin JD, Anhold JA, Coulson D. 2009. Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizona, USA. For Ecol Manage 257:1353–1362.

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D. 2017. nlme: linear and nonlinear mixed effects models.

  • R core Team. 2019. R: A Language and Environment for Statistical Computing. R Found Stat Comput. https://www.r-project.org/

  • Reis-Avila G, Oliveira JM. 2017. Lauraceae: A promising family for the advance of neotropical dendrochronology. Dendrochronologia 44:103–116.

    Article  Google Scholar 

  • Revelle W. 2021. psych: Procedures for Psychological, Psychometric, and Personality Research. Northwest Univ. https://cran.r-project.org/package=psych

  • Rodríguez Ríos R, Matthei S, Quezada M. 1983. Flora arbórea de Chile.

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A. 2000. Global biodiversity scenarios for the year 2100. Science (80- ) 287:1770–1774.

    Article  CAS  Google Scholar 

  • Sánchez-Salguero R, Camarero JJ, Carrer M, Gutiérrez E, Alla AQ, Andreu-Hayles L, Hevia A, Koutavas A, Martínez-Sancho E, Nola P. 2017. Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia. Proc Natl Acad Sci 114:E10142–E10150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Salguero R, Camarero JJ, Dobbertin M, Fernández-Cancio Á, Vilà-Cabrera A, Manzanedo RD, Zavala MA, Navarro-Cerrillo RM. 2013. Contrasting vulnerability and resilience to drought-induced decline of densely planted vs. natural rear-edge Pinus nigra forests. For Ecol Manage 310:956–967.

    Article  Google Scholar 

  • Sánchez-Salguero R, Camarero JJ, Hevia A, Madrigal-González J, Linares JC, Ballesteros-Canovas JA, Sánchez-Miranda A, Alfaro-Sánchez R, Sangüesa-Barreda G, Galván JD. 2015. What drives growth of Scots pine in continental Mediterranean climates: drought, low temperatures or both? Agric for Meteorol 206:151–162.

    Article  Google Scholar 

  • Sánchez-Salguero R, Navarro-Cerrillo RM, Camarero JJ, Fernández-Cancio Á. 2012. Selective drought-induced decline of pine species in southeastern Spain. Clim Change 113:767–785.

    Article  Google Scholar 

  • Schneider I, Brito-Escudero C, Aguilera-Betti I, Klock-Barría K, Saldes-Cortés A, Celis-Diez J, Ugalde A, Jorquera-Martínez L, Venegas-Gonzalez A, Carvallo G, Muñoz A. 2021. Soluciones de base Natural (SbN) para conflictos de escasez hídrica en la Ecorregión Mediterránea de Chile. Rev Geogr Norte Gd.

  • Schulz JJ, Cayuela L, Echeverria C, Salas J, Benayas JMR. 2010. Monitoring land cover change of the dryland forest landscape of Central Chile (1975–2008). Appl Geogr 30:436–447.

    Article  Google Scholar 

  • Schweingruber FH. 1996. Tree rings and environment: dendroecology. Paul Haupt AG Bern

  • Seager R, Osborn TJ, Kushnir Y, Simpson IR, Nakamura J, Liu H. 2019. Climate variability and change of Mediterranean-type climates. J Clim 32:2887–2915.

    Article  Google Scholar 

  • Serra-Maluquer X, Gazol A, Sangüesa-Barreda G, Sánchez-Salguero R, Rozas V, Colangelo M, Gutiérrez E, Camarero JJ. 2019. Geographically Structured Growth decline of Rear-Edge Iberian Fagus sylvatica Forests After the 1980s Shift Toward a Warmer Climate. Ecosystems 22:1325–1337.

    Article  Google Scholar 

  • Serra-Maluquer X, Mencuccini M, Martínez-Vilalta J. 2018. Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia 187:343–354.

    Article  CAS  PubMed  Google Scholar 

  • Stehr A, Aguayo M. 2017. Snow cover dynamics in Andean watersheds of Chile (32.0–39.5 S) during the years 2000–2016. Hydrol Earth Syst Sci 21:5111–5126.

    Article  Google Scholar 

  • Stokes MA. 1996. An introduction to tree-ring dating. University of Arizona Press.

    Google Scholar 

  • Tardif J, Camarero JJ, Ribas M, Gutiérrez E. 2003. Spatiotemporal variability in tree growth in the Central Pyrenees: climatic and site influences. Ecol Monogr 73:241–257.

    Article  Google Scholar 

  • Taucare M, Daniele L, Viguier B, Vallejos A, Arancibia G. 2020. Groundwater resources and recharge processes in the Western Andean Front of Central Chile. Sci Total Environ 722:137824.

    Article  CAS  PubMed  Google Scholar 

  • Thompson DWJ, Wallace JM. 2000. Annular modes in the extratropical circulation. Part I: Month-to-Month Variability. J Clim 13:1000–1016.

    Google Scholar 

  • Touhami I, Chirino E, Aouinti H, El Khorchani A, Elaieb MT, Khaldi A, Nasr Z. 2019. Decline and dieback of cork oak (Quercus suber L.) forests in the Mediterranean basin: A case study of Kroumirie, Northwest Tunisia. J For Res:1–17.

  • Trenberth KE. 1997. The definition of El Nino. Bull Am Meteorol Soc 78:2771–2777.

    Article  Google Scholar 

  • Venegas-González A, Gibson-Capintero S, Anholetto-Junior C, Mathiasen P, Premoli AC, Fresia P. 2022. Tree-ring analysis and genetic associations help to understand drought sensitivity in the Chilean Endemic Forest of Nothofagus macrocarpa. Front For Glob Change 5:762347.

    Article  Google Scholar 

  • Venegas-González A, Roig F, Gutiérrez AG, Peña-Rojas K, Tomazello Filho M. 2018a. Efecto de la variabilidad climática sobre los patrones de crecimiento y establecimiento de Nothofagus macrocarpa en Chile central. Bosque (valdivia) 39:81–93.

    Article  Google Scholar 

  • Venegas-González A, Roig FA, Gutiérrez AG, Tomazello Filho M. 2018b. Recent radial growth decline in response to increased drought conditions in the northernmost Nothofagus populations from South America. For Ecol Manage 409:94–104.

    Article  Google Scholar 

  • Venegas-González A, Roig FA, Peña-Rojas K, Hadad MA, Aguilera-Betti I, Muñoz AA. 2019. Recent consequences of climate change have affected tree growth in distinct Nothofagus macrocarpa (DC.) FM Vaz & Rodr age classes in Central Chile. Forests 10.

  • Vicente-Serrano SM, Beguería y S, López-Moreno JI. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate 23(7):1696–1718.

    Article  Google Scholar 

  • Vila B, Vennetier M, Ripert C, Chandioux O, Liang E, Guibal F, Torre F. 2008. Has global change induced opposite trends in radial growth of Pinus sylvestris and Pinus halepensis at their bioclimatic limit? The example of the Sainte-Baume forest (south-east France). Ann For Sci:9.

  • Villagrán CM. 1995. Quaternary history of the Mediterranean vegetation of Chile. Ecology and biogeography of Mediterranean ecosystems in Chile. Springer: California, and Australia. pp 3–20.

    Google Scholar 

  • Wigley TML, Briffa KR, Jones PD. 1984. On the average value of correlated time-series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213.

    Article  Google Scholar 

  • Young DJN, Stevens JT, Earles JM, Moore J, Ellis A, Jirka AL, Latimer AM. 2017. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol Lett 20:78–86.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank for the authorization of the fieldwork and support in the logistics to the Chilean National Forest Corporation (CONAF), and private parks: “Altos de Cantillana”, “Cerro Santa Inés”, “Aguas de Ramón”, “Bosques de Tinguiririca”, “Aguas Claras”, among others. AVG was funded by the Rufford Small Grants 25822-2, ANID/FONDECYT 11180992 and ClimatAmsud CLI2020009; and AAM was supported by ANID/FONDAP/15110009, ANID/FONDECYT 1201714, ESR UCV2095, and PUCV DI 39.431/2020; AGR thanks ANID/PAI/77190101. IAB also thanks to ANID-Subdirección de Capital Humano/Doctorado Nacional/2021-21212335 for the PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venegas-González.

Additional information

Author contributions: AVG and AAM conceived the manuscript and idea designed the field sampling; AVG, IS, TGZ and IAB collected the samples and conducted the lab work; AVG, SGC and AGR conducted the statistical analyses and produced figures and tables; AVG led the writing of the manuscript; AVG, AAM and FR contributed critically to the writing. All authors gave final approval for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Supplementary file2 (DOCX 768 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venegas-González, A., Muñoz, A.A., Carpintero-Gibson, S. et al. Sclerophyllous Forest Tree Growth Under the Influence of a Historic Megadrought in the Mediterranean Ecoregion of Chile. Ecosystems 26, 344–361 (2023). https://doi.org/10.1007/s10021-022-00760-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-022-00760-x

Keywords

Navigation