Skip to main content

Advertisement

Log in

Estimating Pelagic Fish Biomass in a Tropical Seascape Using Echosounding and Baited Stereo-Videography

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The pelagic ecosystem is the ocean’s largest by volume and of major importance for food provision and carbon cycling. The high fish species diversity common in the tropics presents a major challenge for biomass estimation using fisheries acoustics, the traditional approach for evaluating mid-water biomass. Converting echo intensities to biomass density requires information on species identity and size, which are typically obtained by lethal means, and thus unsuitable in the portion of the ocean that is ‘no take’. To improve conservation and ecosystem-based management, we present a procedure for determining fish biomass density, using data on species identity, relative abundance, and lengths obtained from stereo baited remote underwater video systems (stereo-BRUVS) to inform the scaling of echosounder survey data (at 38 kHz). We apply the procedure in the British Indian Ocean Territory marine protected area, using acoustic data from 3025 km of survey transects and 546 BRUVS deployments recording relative abundance and size of 12,335 individual fish. Using a Generalised Additive Model of biomass density (GAM, adjR2 = 0.61) we predict, on the basis of oceanographic conditions and bathymetry, that the top 200 m pelagic ecosystem in the Chagos Archipelago, some 118,324 km2, held 3.84 (2.66, 5.62, 95% CI), 33.09 (23.41, 47.35) and 4.08 (3.1, 5.44) million tonnes of fish in November 2012, January 2015, and February 2016, respectively. Our non-extractive procedure yields ecologically credible patterns in biomass across multiple temporal (hours and years) and spatial (metres and kilometres) scales, and marks an improvement on the use of echo intensity alone as a biomass proxy. High seasonal and interannual variability has implication for pelagic fish monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Akaike, H. 1973. Information Theory and an extension of the maximum likelihood B.N. Petrov and F. Cs'aki [eds.]. International Symposium on Information Theory 267–281.

  • Bailey DM, King NJ, Priede IG. 2007. Cameras and carcasses: historical and current methods for using artificial food falls to study deep-water animals. Marine Ecology Progress Series 350:179–191. https://doi.org/10.3354/meps07187.

    Article  Google Scholar 

  • Benkwitt CE, Wilson SK, Graham NAJ. 2019. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Global Change Biology 20(8):2459–2514. https://doi.org/10.1111/gcb.14643.

    Article  Google Scholar 

  • Bertrand A, Josse E. 2000. Acoustic estimation of longline tuna abundance. ICES Journal of Marine Science 57:919–926. https://doi.org/10.1006/jmsc.2000.0579.

    Article  Google Scholar 

  • Boerder K, Schiller L, Worm B. 2019. Not all who wander are lost: Improving spatial protection for large pelagic fishes. Marine Policy 105:80–90. https://doi.org/10.1016/j.marpol.2019.04.013.

    Article  Google Scholar 

  • Boersch-Supan PH, Rogers AD, Brierley AS. 2017. The distribution of pelagic sound scattering layers across the southwest Indian Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 136:108–121. https://doi.org/10.1016/j.dsr2.2015.06.023.

    Article  Google Scholar 

  • Boldt JL, Williams K, Rooper CN, Towler RH, Gauthier S. 2018. Development of stereo camera methodologies to improve pelagic fish biomass estimates and inform ecosystem management in marine waters. Fisheries Research 198:66–77. https://doi.org/10.1016/j.fishres.2017.10.013.

    Article  Google Scholar 

  • Bouchet, P. J., and Meeuwig, J. J . 2015. Drifting baited stereo-videography: a novel sampling tool for surveying pelagic wildlife in offshore marine reserves. Ecosphere 6: art137. doi:https://doi.org/10.1890/ES14-00380.2

  • Bouchet PJ, Meeuwig JJ, Salgado Kent CP, Letessier TB, Jenner CK. 2015. Topographic determinants of mobile vertebrate predator hotspots: current knowledge and future directions. Biological Reviews 90(3):699–728. https://doi.org/10.1111/j.1467-2979.2012.00483.x.

    Article  PubMed  Google Scholar 

  • Brierley AS. 2014. Diel vertical migration. Current Biology 24:R1074–R1076. https://doi.org/10.1016/j.cub.2014.08.054.

    Article  CAS  PubMed  Google Scholar 

  • Cappo M, Speare P, De'ath G. 2004. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. Journal of Experimental Marine Biology and Ecology 302(2):123–152. https://doi.org/10.1016/j.jembe.2003.10.006.

    Article  Google Scholar 

  • Collins, C., Nuno, A., Benaragama, A., Broderick, A. C., Wijesundara, I., Wijetunge, D., and Letessier, T. B. (2021a). Ocean-scale footprint of a highly mobile fishing fleet: social- ecological drivers of fleet behaviour and evidence of illegal fishing. People and Nature.

  • Collins, C., Nuno, A., Broderick, A. C., Curnick, D. J., de Vos, A., Franklin, T., and others (2021b). Understanding persistent non-compliance in a remote, large scale marine protected area. Frontiers in Marine Science.

  • Cox MJ, Letessier TB, Brierley AS. 2013. Zooplankton and micronekton biovolume at the Mid-Atlantic Ridge and Charlie-Gibbs Fracture Zone estimated by multi-frequency acoustic survey. Deep Sea Research Part II: Topical Studies in Oceanography 98:269–278. https://doi.org/10.1016/j.dsr2.2013.07.020.

    Article  Google Scholar 

  • Curnick DJ, Collen B, Koldewey HK, Jones KE, Kemp KM, Ferretti F. 2020. Interactions between a large marine protected area, pelagic tuna and associated fisheries. Frontiers Marine Science. https://doi.org/10.3389/fmars.2020.00318.

    Article  Google Scholar 

  • Currey-Randall LM, Cappo M, Simpfendorfer CA, Farabaugh NF, Heupel MR. 2020. Optimal soak times for Baited Remote Underwater Video Station surveys of reef-associated elasmobranchs. Januchowski-Hartley FA, editor. PloS one 15:e0231688–20

  • Currie JC, Lengaigne M, Vialard J, Kaplan DM, Aumont O, Naqvi SWA, Maury O. 2013. Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences 10(10):6677–6698. https://doi.org/10.5194/bg-10-6677-2013.

    Article  CAS  Google Scholar 

  • Dunn N, Curnick D. 2019. Using historical fisheries data to predict tuna distribution within the British Indian Ocean Territory Marine Protected Area, and implications for its management. Aquatic Conservation: Marine and Freshwater Ecosystems 101:215–314. https://doi.org/10.1002/aqc.3204.

    Article  Google Scholar 

  • Demer D, Berger L, Bernasconi M, Bethke E, Boswell KM, Chu D and others 2015. Calibration of acoustic instruments. ICES Cooperative Research Report 326:133.

    Google Scholar 

  • Duarte, C. M., Agusti, S., Barbier, E., and others. 2020. Rebuilding marine life. Nature 1–13. doi:https://doi.org/10.1038/s41586-020-2146-7

  • Dunlop KM, Ruxton GD, Scott EM, Bailey DM. 2015. Absolute abundance estimates from shallow water baited underwater camera surveys; a stochastic modelling approach tested against field data. Journal of Experimental Marine Biology and Ecology 472:126–134. https://doi.org/10.1016/j.jembe.2015.07.010.

    Article  Google Scholar 

  • Dunne RP, Polunin NVC, Sand PH, Johnson ML. 2014. The Creation of the Chagos Marine Protected Area: A Fisheries Perspective. Marine Managed Areas and Fisheries 69:79–127. https://doi.org/10.1016/B978-0-12-800214-8.00003-7.

    Article  Google Scholar 

  • Duvel JP, Bouruet-Aubertot P, Ward B and others 2009. Cirene: Air—Sea Interactions in the Seychelles—Chagos Thermocline Ridge Region. Bulletin of the American Meteorological Society 90:45–62. https://doi.org/10.1175/2008BAMS2499.1.

    Article  Google Scholar 

  • Feng M, Meyers G. 2003. Interannual variability in the tropical Indian Ocean: a two-year time-scale of Indian Ocean Dipole. Deep Sea Research Part II: Topical Studies in Oceanography 50:2263–2284. https://doi.org/10.1016/S0967-0645(03)00056-0.

    Article  Google Scholar 

  • Fernandes, P. G., Gerlotto, F., Holliday, D., Nakken, O., and Simmonds, E. J. 2002. Acoustic applications in fisheries science: the ICES contribution. ICES Marine Science Symposia 483–492.

  • Ferretti, F., Curnick, D., Romanov, E. V., and Block, B. A. 2018. Shark baselines and the conservation role of remote coral reef ecosystems. Science Advances 4:eaaq0333

  • Foote KG. 1980. Importance of the swimbladder in acoustic scattering by fish: a comparison of gadoid and mackerel target strengths. Journal of the Acoustical Society of America 67:2084–2089.

    Article  Google Scholar 

  • Foote KG. 1983. Linearity of fisheries acoustics, with addition theorems. Journal of the Acoustic Society of America 73:1932–1940. https://doi.org/10.1121/1.389583.

    Article  Google Scholar 

  • Foote KG. 1987. Fish Target Strengths for Use in Echo Integrator Surveys. Journal of the Acoustic Society of America 82:981–987.

    Article  Google Scholar 

  • Froese, R., and Pauly, D. 2015. FishBase. World Wide Web electronic publication.

  • Garcia R, Prados R, Quintana J, Tempelaar A, Gracias N, Rosen S and others 2020. Automatic segmentation of fish using deep learning with application to fish size measurement. ICES Journal of Marine Science 77(4):1354–1366. https://doi.org/10.1093/icesjms/fsz186.

    Article  Google Scholar 

  • Harvey ES, Shortis MR. 1998. Calibration stability of an underwater ste- reo-video system: implications for measurement accuracy and precision. Marine Technology Society Journal 32:3–17.

    Google Scholar 

  • Harvey ES, Cappo M, Butler J, Hall N, Kendrick G. 2007. Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Marine Ecology Progress Series 350:245–254. https://doi.org/10.3354/meps07192.

    Article  Google Scholar 

  • Head, C. E. I., Bayley, D. T. I., Rowlands, G., Roche, R. C., Tickler, D. M., Rogers, A. D., and others. (2019). Coral bleaching impacts from back-to-back 2015–2016 thermal anomalies in the remote central Indian Ocean. Coral Reefs, 1–14. https://doi.org/10.1007/s00338-019-01821-9

  • Hermes JC, Reason CJC. 2008. Annual cycle of the South Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model. Journal of Geophysical Research 113:2305. https://doi.org/10.1029/2007JC004363.

    Article  Google Scholar 

  • Hilborn, R., Amoroso, R. O., Anderson, C. M., and others. 2020. Effective fisheries management instrumental in improving fish stock status. Proceedings of the National Academy of Sciences 1–7. doi:https://doi.org/10.1073/pnas.1909726116

  • Holmin AJ, Handegard NO, Korneliussen RJ, Tjøstheim D. 2012. Simulations of multi-beam sonar echos from schooling individual fish in a quiet environment. Journal Acoustic Society America 132:3720–3734. https://doi.org/10.1121/1.4763981.

    Article  Google Scholar 

  • Hosegood PJ, Nimmo-Smith WAM, Proud R, Adams K, Brierley AS. 2019. Internal lee waves and baroclinic bores over a tropical seamount shark “hot-spot.” Progress in Oceanography 172:34–50. https://doi.org/10.1016/j.pocean.2019.01.010.

    Article  Google Scholar 

  • Irigoien X, Klevjer TA, Røstad A and others 2014. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature Communications 5:1–10. https://doi.org/10.1038/ncomms4271.

    Article  CAS  Google Scholar 

  • Juan-Jordá MJ, Mosqueira I, Cooper AB, Freire J, Dulvy NK. 2011. Global population trajectories of tunas and their relatives. Proceedings of the National Academy of Sciences 108(51):20650–20655. https://doi.org/10.1073/pnas.1107743108.

    Article  Google Scholar 

  • Kloser RJ, Williams A, Koslow JA. 1997. Problems with acoustic target strength measurements of a deepwater fish, orange roughy (Hoplostethus atlanticus, Collett). Ices Journal of Marine Science 54:60–71.

    Article  Google Scholar 

  • Kaplan DM, Chassot E, Amande JM, Dueri S, Demarcq H, Dagorn L, Fonteneau A. 2014. Spatial management of Indian Ocean tropical tuna fisheries: potential and perspectives. ICES Journal of Marine Science 71:1728–1749. https://doi.org/10.1093/icesjms/fst233.

    Article  Google Scholar 

  • Koldewey HJ, Curnick D, Harding S, Harrison LR, Gollock M. 2010. Potential benefits to fisheries and biodiversity of the Chagos Archipelago/British Indian Ocean Territory as a no-take marine reserve. Marine Pollution Bulletin 60:1906–1915. https://doi.org/10.1016/j.marpolbul.2010.10.002.

    Article  CAS  PubMed  Google Scholar 

  • Korneliussen RJ, Heggelund Y, Eliassen IK, Øye OK, Knutsen T, Dalen J. 2009. Combining multibeam-sonar and multifrequency-echosounder data: examples of the analysis and imaging of large euphausiid schools. ICES Journal of Marine Science 66(6):991–997. https://doi.org/10.1093/icesjms/fsp092.

    Article  Google Scholar 

  • Lan K-W, Evans K, Lee M-A. 2013. Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean. Climatic Change 119:63–77. https://doi.org/10.1007/s10584-012-0637-8.

    Article  Google Scholar 

  • Letessier TB, Meeuwig JJ, Gollock M and others 2013. Assessing pelagic fish populations: The application of demersal video techniques to the mid-water environment. Methods in Oceanography 8:41–55. https://doi.org/10.1016/j.mio.2013.11.003.

    Article  Google Scholar 

  • Letessier TB, Juhel J-B, Vigliola L, Meeuwig JJ. 2015. Low-cost small action cameras in stereo generate accurate measurements of fish. Journal of Experimental Marine Biology and Ecology 466:120–126. https://doi.org/10.1016/j.jembe.2015.02.013.

    Article  Google Scholar 

  • Letessier TB, Cox MJ, Meeuwig JJ, Boersch-Supan PH, Brierley AS. 2016. Enhanced pelagic biomass around coral atolls. Marine Ecology Progress Series 546:271–276. https://doi.org/10.3354/meps11675.

    Article  Google Scholar 

  • Letessier TB, Bouchet PB, Meeuwig JJ. 2017. Sampling mobile oceanic fishes and sharks: implications for fisheries and conservation planning. Biological Reviews 92:627–646.

    Article  Google Scholar 

  • Letessier, T. B., Mouillot, D., Bouchet, P. J., Vigliola, L., Fernandes, M. C., Thompson, C., and others. (2019). Remote reefs and seamounts are the last refuges for marine predators across the Indo-Pacific. PLoS Biology, 17(8), e3000366.

  • Maclennan DN, Fernandes PG, Dalen J. 2002. A consistent approach to definitions and symbols in fisheries acoustics. ICES Journal of Marine Science 59:365–369. https://doi.org/10.1006/jmsc.2001.1158.

    Article  Google Scholar 

  • MacNeil MA, Graham NAJ, Cinner JE and others 2015. Recovery potential of the world’s coral reef fishes. Nature 520:341–344. https://doi.org/10.1038/nature14358.

    Article  CAS  PubMed  Google Scholar 

  • Masumoto Y, Horii T, Ueki I, Hase H, Ando K, Mizuno K. 2008. Short-term upper-ocean variability in the central equatorial Indian Ocean during 2006 Indian Ocean Dipole event. Geophysical Research Letters 35:L14S09. https://doi.org/10.1029/2008GL033834@10.1002/(ISSN)1944-8007.MONSOON1.

    Article  Google Scholar 

  • Maxwell SM, Morgan LE. 2013. Foraging of seabirds on pelagic fishes: implications for management of pelagic marine protected areas. Marine Ecology Progress Series 481:289–303.

    Article  Google Scholar 

  • Meeuwig, J. J., Thompson, C., Forrest, A., Jabour Christ, H., Letessier, T. B., and Meeuwig, D. J. (2021). Pulling Back the Blue Curtain: a Pelagic Monitoring Program for the Blue Belt. Frontiers in Marine Science.

  • Morais, R. A., and Bellwood, D. R. (2019). Pelagic Subsidies Underpin Fish Productivity on a Degraded Coral Reef. Current Biology, 1–26. https://doi.org/10.1016/j.cub.2019.03.044

  • Murphy HM, Jenkins GP. 2010. Observational methods used in marine spatial monitoring of fishes and associated habitats: a review. Marine Freshwater Research 61:236–252. https://doi.org/10.1071/MF09068.

    Article  CAS  Google Scholar 

  • Pacoureau, N., Rigby, C. L., Kyne, P. M., Sherley, R. B., Winker, H., Carlson, J. K., and others. (2021). Half a century of global decline in oceanic sharks and rays. Nature, 1–21. https://doi.org/10.1038/s41586-020-03173-9

  • Perez Correa J, Carr P, Meeuwig JJ, Koldewey HJ, Letessier TB. 2020. Climate oscillation and the invasion of alien species influence the oceanic distribution of seabirds. Ecology and Evolution 271(4):S246–S319. https://doi.org/10.1002/ece3.6621.

    Article  Google Scholar 

  • Pinheiro, J. C., and D. M. Bates. 2000. Mixed-Effects Models in S and S-PLUS.

  • Priede IG, Merrett NR. 1996. Estimation of abundance of abyssal demersal fishes; a comparison of data from trawls and baited cameras. Journal of Fish Biology 49:207–216. https://doi.org/10.1111/j.1095-8649.1996.tb06077.x.

    Article  Google Scholar 

  • Proud, R., Cox, M. J., and Brierley, A. S. 2017. Biogeography of the Global Ocean’s Mesopelagic Zone. Current Biology 113–119. doi:https://doi.org/10.1016/j.cub.2016.11.003

  • Proud, R., Handegard, N. O., Kloser, R. J., Cox, M. J., Brierley, A. S. Handling editor: David Demer. 2018. From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass. ICES Journal of Marince Science 3: 1. doi:https://doi.org/10.1121/1.421470

  • Proud RH, Letessier TB, Brierley AS. 2021. Processed echosounder data and pelagic fish biomass estimates from the 2012, 2015 and 2016 vessel-based surveys of the Chagos Archipelago MPA (dataset). Dataset. University of St Andrews Research Portal. https://doi.org/10.17630/8baca0bf-d660-4d06-b418-f45238efd67c

  • Rattle, J. 2019. A case study on the management of yellowfin tuna by the Indian Ocean Tuna Commission. A Blue Marine Foundation report 1–23.

  • Resplandy L, Vialard J, Levy M, Aumont O, Dandonneau Y. 2009. Seasonal and intraseasonal biogeochemical variability in the thermocline ridge of the southern tropical Indian Ocean. Journal of Geophysical Research 114:1–13. https://doi.org/10.1029/2008JC005246.

    Article  CAS  Google Scholar 

  • Rosen S, Jørgensen T, Hammersland-White D, Holst JC. 2013. DeepVision: a stereo camera system provides highly accurate counts and lengths of fish passing inside a trawl. Canadian Journal of Fisheries and Aquatic Science 70:1456–1467. https://doi.org/10.1139/cjfas-2013-0124.

    Article  Google Scholar 

  • Sala E, Lubchenco J, Grorud-Colvert K, Novelli C, Roberts C, Sumaila UR. 2018. Assessing real progress towards effective ocean protection. Marine Policy 91:11–13. https://doi.org/10.1016/j.marpol.2018.02.004.

    Article  Google Scholar 

  • Sala, E., Mayorga, J., Bradley, D., Cabral, R. B., Atwood, T. B., Auber, A., and others (2021). Protecting the global ocean for biodiversity, food and climate. Nature, 1–15. https://doi.org/10.1038/s41586-021-03371-z

  • Santana-Garcon, J., Braccini, M., Langlois, T. J., Newman, S. J., McAuley, R., and Harvey E. S. 2014. Calibration of pelagic stereo-BRUVs and scientific longline surveys for sampling sharks. Methods Ecology Evolution 824–833.

  • Schobernd ZH, Bacheler NM, Conn PB, Trenkel V. 2014. Examining the utility of alternative video monitoring metrics for indexing reef fish abundance. Canadian Journal of Fisheries and Aquatic Sciences 71:464–471.

    Article  Google Scholar 

  • Schott FA, McCreary JP Jr. 2001. The monsoon circulation of the Indian Ocean. Progress in Oceanography 51:1–123.

    Article  Google Scholar 

  • SeaGIS. 2008. PhotoMeasure. SeaGIS Pty, Bacchus Marsh. www.seagis.com.au.

  • Sheppard CRC, Ateweberhan M, Bowen BW and others 2012. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no-take marine protected area. Aquatic Conservation: Marine Freshwater Ecosystem 31:232–261. https://doi.org/10.1002/aqc.1248.

    Article  Google Scholar 

  • Sherman CS, Chin A, Heupel MR, Simpfendorfer CA. 2018. Are we underestimating elasmobranch abundances on baited remote underwater video systems (BRUVS) using traditional metrics? Journal of Experimental Marine Biology and Ecology 503:80–85. https://doi.org/10.1016/j.jembe.2018.03.002.

    Article  Google Scholar 

  • Sibert J, Senina I, Lehodey P, Hampton J. 2012. Shifting from marine reserves to maritime zoning for conservation of Pacific bigeye tuna (Thunnus obesus). Proceedings of the National Academy of Sciences 109:18221–18225. https://doi.org/10.1073/pnas.1209468109.

    Article  Google Scholar 

  • Simmonds EJ, Maclennan DN. 2005. Fisheries acoustics: theory and practise, 2nd edn. London: Chapman and Hall.

    Book  Google Scholar 

  • Surette T, LeBlanc CH, Claytor RR, Loots C. 2015. Using inshore fishery acoustic data on Atlantic herring (Clupea harengus) spawning aggregations to derive annual stock abundance indices. Fisheries Research 164:266–277. https://doi.org/10.1016/j.fishres.2014.12.010.

    Article  Google Scholar 

  • Teng M, Nathoo FS, Johnson TD. 2017. Bayesian Computation for Log-Gaussian Cox Processes: A Comparative Analysis of Methods. Journal of Statistical Computation and Simulation 87:2227–2252.

    Article  Google Scholar 

  • Watson DL, Harvey ES, Anderson MJ, Kendrick GA. 2005. A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques. Marine Biology 148:415–425. https://doi.org/10.1007/s00227-005-0090-6.

    Article  Google Scholar 

  • Watkins JL, Brierley AS. 2002. Verification of the acoustic techniques used to identify Antarctic krill. ICES Journal of Marine Science 59(6):1326–1336.

    Article  Google Scholar 

  • Webber BGM, Matthews AJ, Heywood KJ, Stevens DP. 2012. Ocean Rossby waves as a triggering mechanism for primary Madden–Julian events. Quarterly Journal of the Royal Meteorological Society 138:514–527. https://doi.org/10.1002/qj.936.

    Article  Google Scholar 

  • Whitmarsh SK, Fairweather PG, Huveneers C. 2016. What is Big BRUVver up to? Methods and uses of baited underwater video. Reviews in Fish Biology and Fisheries 27:53–73.

    Article  Google Scholar 

  • Wood, S. 2006. Generalized Additive Models: An introduction with R. 391.

  • Yates KL, Bouchet PJ, Caley MJ and others 2018. Outstanding Challenges in the Transferability of Ecological Models. Trends in Ecology and Evolution 33:790–802. https://doi.org/10.1016/j.tree.2018.08.001.

    Article  PubMed  Google Scholar 

  • Yesson, C., Letessier, T. B., Nimmo-Smith, A., Hosegood, P., Brierley, A. S., Harouin, M., and Proud, R. (2020). Improved bathymetry leads to 4000 new seamount predictions in the global ocean. UCL Open: Environment Preprint, 1–14. https://doi.org/10.14324/111.444/000044.v1

Download references

Acknowledgements

This research was conducted under permits and support granted by the British Indian Ocean Territory’s Administration and the Foreign and Commonwealth Office of the United Kingdom, and under ethics approval and permit RA/3/100/1166 and RA/3/100/1386 from the Animal Ethics Committee of the University of Western Australia, following guidelines under the Animal Welfare Act 2002 (WA) and the Australian Code for the Care and Use of Animals for Scientific Purposes. This paper is an output of the Bertarelli Programme in Marine Science, and we are grateful for the Bertarelli Foundation’s support. We thank Christopher D. H. Thompson and Marjorie Cattaneo Fernandes for contributions to the BRUVS deployments and video analysis. We thank Philipp Boersch–Supan for assistance with acoustic data collection in 2012. We are grateful to Marine Science Scotland for lending us the towed body for the 2016 expedition, and in particular Eric Armstrong and Phil Copland for towed body preparation and shipping. Finally, for excellent assistance, fond memories and friendship, we thank the Master, Chief and crew of the support vessel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom B. Letessier.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letessier, T.B., Proud, R., Meeuwig, J.J. et al. Estimating Pelagic Fish Biomass in a Tropical Seascape Using Echosounding and Baited Stereo-Videography. Ecosystems 25, 1400–1417 (2022). https://doi.org/10.1007/s10021-021-00723-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00723-8

Keywords

Navigation