Skip to main content

Advertisement

Log in

Variation in Fine Root Characteristics and Nutrient Dynamics Across Alaskan Ecosystems

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Carbon cycle perturbations in high-latitude ecosystems associated with rapid warming can have implications for the global climate. Belowground biomass is an important component of the carbon cycle in these ecosystems, with, on average, significantly more vegetation biomass belowground than aboveground. Large quantities of dead root biomass are also in these ecosystems owing to slow decomposition rates. Current understanding of how live and dead root biomass carbon pools vary across high-latitude ecosystems and the environmental conditions associated with this variation is limited due to the labor- and time-intensive nature of data collection. To that end, we examined patterns and factors (abiotic and biotic) associated with the variation in live and dead fine root biomass (FRB) and FRB carbon (C), nitrogen (N) and phosphorus concentrations for 23 sites across a latitudinal gradient in Alaska, spanning both boreal forest and tundra biomes. We found no difference in the live or dead FRB variables between these biomes, despite large differences in predominant vegetation types, except for significantly higher live FRB C:N ratios in boreal sites. Soil C:N ratio, moisture, and temperature, along with moss cover, explained a substantial portion of the dead:live FRB ratio variability across sites. We find all these factors have negative relationships with dead FRB, while having positive or no relationship with live FRB. This work demonstrates that FRB does not necessarily correlate with aboveground vegetation characteristics, and it highlights the need for finer-scale measurements of abiotic and biotic factors to understand FRB landscape variability now and into the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abbott BW, Jones JB, Schuur EAG, Chapin FS, Bowden WB, Bret-Harte MS, Epstein HE, Flannigan MD, Harms TK, Hollingsworth TN, Mack MC, McGuire AD, Natali SM, Rocha A V., Tank SE, Turetsky MR, Vonk JE, Wickland KP, Aiken GR, Alexander HD, Amon RMW, Benscoter BW, Bergeron Y, Bishop K, Blarquez O, Bond-Lamberty B, Breen AL, Buffam I, Cai Y, Carcaillet C, Carey SK, Chen JM, Chen HYH, Christensen TR, Cooper LW, Cornelissen JHC, De Groot WJ, Deluca TH, Dorrepaal E, Fetcher N, Finlay JC, Forbes BC, French NHF, Gauthier S, Girardin MP, Goetz SJ, Goldammer JG, Gough L, Grogan P, Guo L, Higuera PE, Hinzman L, Hu FS, Hugelius G, Jafarov EE, Jandt R, Johnstone JF, Karlsson J, Kasischke ES, Kattner G, Kelly R, Keuper F, Kling GW, Kortelainen P, Kouki J, Kuhry P, Laudon H, Laurion I, MacDonald RW, Mann PJ, Martikainen PJ, McClelland JW, Molau U, Oberbauer SF, Olefeldt D, Paré D, Parisien MA, Payette S, Peng C, Pokrovsky OS, Rastetter EB, Raymond PA, Raynolds MK, Rein G, Reynolds JF, Robards M, Rogers BM, Schdel C, Schaefer K, Schmidt IK, Shvidenko A, Sky J, Spencer RGM, Starr G, Striegl RG, Teisserenc R, Tranvik LJ, Virtanen T, et al. 2016. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: An expert assessment. Environ Res Lett 11.

  • Andresen CG, Lawrence DM, Wilson CJ, David McGuire A, Koven C, Schaefer K, Jafarov E, Peng S, Chen X, Gouttevin I, Burke E, Chadburn S, Ji D, Chen G, Hayes D, Zhang W. 2020. Soil moisture and hydrology projections of the permafrost region—a model intercomparison. Cryosphere 14:445–59.

    Article  Google Scholar 

  • Apps MJ, Kurz WA, Luxmoore RJ, Nilsson LO, Sedjo RA, Schmidt R, Simpson LG, Vinson TS. 1993. Boreal forests and tundra. Water, Air, Soil Pollut 70:39–53.

    Article  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.

    Article  Google Scholar 

  • Beck P, Horning N, Goetz S, Loranty M, Tape K. 2011. Shrub cover on the North Slope of Alaska: A circa 2000 baseline map. Arctic, Antarct Alp Res 43:355–63.

    Article  Google Scholar 

  • Beck PSA, Goetz SJ. 2011. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: Ecological variability and regional differences. Environ Res Lett 7.

  • Berner LT, Jantz P, Tape KD, Goetz SJ. 2018. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska. Environ Res Lett 13.

  • Blume-Werry G, Jansson R, Milbau A. 2017a. Root phenology unresponsive to earlier snowmelt despite advanced above-ground phenology in two subarctic plant communities. Funct Ecol 31:1493–502.

    Article  Google Scholar 

  • Blume-Werry G, Lindén E, Andresen L, Classen AT, Sanders NJ, von Oppen J, Sundqvist MK. 2017b. Proportion of fine roots, but not plant biomass allocation belowground, increases with elevation in arctic tundra. J Veg Sci 2018:1–10.

    Google Scholar 

  • Blume-Werry G, Wilson SD, Kreyling J, Milbau A. 2016. The hidden season: Growing season is 50% longer below than above ground along an arctic elevation gradient. New Phytol 209:978–86.

    Article  CAS  PubMed  Google Scholar 

  • Bonan GB, Chapin FS, Thompson SL. 1995. Boreal forest and tundra ecosystems as components of the climate system. Clim Change 29:145–67.

    Article  Google Scholar 

  • Box JE, Colgan WT, Christensen TR, Schmidt NM, Lund M, Parmentier FJW, Brown R, Bhatt US, Euskirchen ES, Romanovsky VE, Walsh JE, Overland JE, Wang M, Corell RW, Meier WN, Wouters B, Mernild S, Mård J, Pawlak J, Olsen MS. 2019. Key indicators of Arctic climate change: 1971–2017. Environ Res Lett 14.

  • Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EAG. 2010. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12:1842–54.

    Article  CAS  PubMed  Google Scholar 

  • Chadburn S, Krinner G, Porada P, Bartsch A, Beer C, Belelli Marchesini L, Boike J, Elberling B, Friborg T, Hugelius G, Johansson M, Kuhry P, Kutzbach L, Langer M, Lund M, Parmentier F-J, Peng S, Van Huissteden K, Wang T, Westermann S, Zhu D, Burke E. 2017. Carbon stocks and fluxes in the high latitudes: Using site-level data to evaluate Earth system models. Biogeosciences Discuss: 1–41.

  • Chapin FS, Johnson DA, Mckendrick JD, Mckendrick JAYD. 1980. Seasonal movement of nutrients in plants of differing growth form in an Alaskan Tundra ecosystem: Implications for herbivory. J Ecol 68:189–209.

    Article  CAS  Google Scholar 

  • Chapin FS, Shaver GR, Kedrowski RA. 1986. Environmental controls over carbon, nitrogen and phosphorus fractions in Eriophorum vaginatum in Alaskan Tussock Tundra. J Ecol 74:167–95.

    Article  CAS  Google Scholar 

  • Chapin FS, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA, Welker JM. 2005. Role of land-surface changes in arctic summer warming. Science (80-) 310:657–60.

  • Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl B. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science (80-) 339:1615–9.

  • Demarco J, Mack MC, Bret-Harte MS. 2011. Availability in three Alaskan arctic plant communities microenvironment, matter quality on N in three Alaskan Arctic plant communities the effects of Sno. Ecosystems 14:804–17.

    Article  CAS  Google Scholar 

  • Dennis JG, Johnson PL. 1970. Shoot and rhizome-root standing crops of Tundra vegetation at Barrow, Alaska. Arct Alp Res 2:253.

    Article  Google Scholar 

  • Eugster W, Rouse WR, Pielke RA, Mcfadden JP, Baldocchi DD, Kittel TGF, Chapin FS, Liston GE, Vidale PL, Vaganov E, Chambers S. 2000. Land–atmosphere energy exchange in Arctic tundra and boreal forest: Available data and feedbacks to climate. Glob Chang Biol 6:84–115.

    Article  PubMed  Google Scholar 

  • Evgrafova A, de la Haye TR, Haase I, Shibistova O, Guggenberger G, Tananaev N, Sauheitl L, Spielvogel S. 2018. Small-scale spatial patterns of soil organic carbon and nitrogen stocks in permafrost-affected soils of northern Siberia. Geoderma 329:91–107. https://doi.org/10.1016/j.geoderma.2018.05.014.

    Article  CAS  Google Scholar 

  • Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC. 2013. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J Ecol 101:943–52.

    Article  CAS  Google Scholar 

  • Frost GV, Epstein HE. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Glob Chang Biol 20:1264–77.

    Article  PubMed  Google Scholar 

  • Gordon WS, Jackson RB. 2000. Nutrient concentrations in fine roots. Ecology 81:275–80.

    Article  Google Scholar 

  • Gornall JL, Jónsdóttir IS, Woodin SJ, Van Der Wal R. 2007. Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153:931–41.

    Article  CAS  PubMed  Google Scholar 

  • Graham RM, Cohen L, Petty AA, Boisvert LN, Rinke A, Hudson SR, Nicolaus M, Granskog MA. 2017. Increasing frequency and duration of Arctic winter warming events. Geophys Res Lett 44:6974–83.

    Article  Google Scholar 

  • Graves JH, Peet RK, White PS. 2006. The influence of carbon—nutrient balance on herb and woody plant abundance in temperate forest understories. J Veg Sci 17:217.

    Google Scholar 

  • Grogan P, Chapin III FS. 2000. Initial effects of experimental warming on above- and belowground components of net ecosystem CO2 exchange in arctic tundra. Oecologia 125:512–20.

  • GTN-P. 2015. Global Terrestrial Network for Permafrost metadata for permafrost boreholes (TSP). PANGAEA.

  • Hartley IP, Garnett MH, Sommerkorn M, Hopkins DW, Fletcher BJ, Sloan VL, Phoenix GK, Wookey PA. 2012. A potential loss of carbon associated with greater plant growth in the European Arctic. Nat Clim Chang 2:875–9.

    Article  CAS  Google Scholar 

  • Hewitt RE, DeVan MR, Lagutina IV, Genet H, McGuire AD, Taylor DL, Mack MC. 2019. Mycobiont contribution to tundra plant acquisition of permafrost-derived nitrogen. New Phytol 226:126–41.

    Article  CAS  Google Scholar 

  • Hobbie SE, Chapin FS. 1998. The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79:1526–44.

    Google Scholar 

  • Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O’Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P. 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–93.

    Article  Google Scholar 

  • Iversen CM, McCormack ML, Powell AS, Blackwood CB, Freschet GT, Kattge J, Roumet C, Stover DB, Soudzilovskaia NA, Valverde-Barrantes OJ, van Bodegom PM, Violle C. 2017. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytol 215:15–26.

    Article  PubMed  Google Scholar 

  • Iversen CM, Sloan VL, Sullivan PF, Euskirchen ES, Mcguire AD, Norby RJ, Walker AP, Warren JM, Wullschleger SD. 2015. The unseen iceberg: Plant roots in Arctic Tundra. New Phytol 205:34–58.

    Article  PubMed  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411.

    Article  CAS  PubMed  Google Scholar 

  • Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G. 2017. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annu Rev Ecol Evol Syst 48:419–45.

    Article  Google Scholar 

  • Jonasson S. 1992. Plant responses to fertilization and species removal in Tundra related to community structure and clonality. Oikos 63:420–9.

    Article  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK. 1999. Coupling of nutrient cycling and carbon dynamics in the Arctic, integration of soil microbial and plant processes. Appl Soil Ecol 11:135–46.

    Article  Google Scholar 

  • Jones JB, Case BW. 1996. Soil testing and plant analysis no. 3. In: Methods of soil analysis Part 3. pp 389–415.

  • Kane D, Hinzman LD, Zarling JP. 1991. Thermal response of the active layer to climatic warning in a permafrost environmnet. Cold Reg Sci Techonol 19:111–22.

    Article  Google Scholar 

  • Keuper F, Dorrepaal E, van Bodegom PM, van Logtestijn R, Venhuizen G, van Hal J, Aerts R. 2017. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Glob Chang Biol 23:4257–66.

    Article  PubMed  Google Scholar 

  • Laganière J, Paré D, Bergeron Y, Chen HYH, Brassard BW, Cavard X. 2013. Stability of soil carbon stocks varies with forest composition in the canadian boreal biome. Ecosystems 16:852–65.

    Article  CAS  Google Scholar 

  • Lantz TC, Gergel SE, Kokelj SV. 2010. Spatial heterogeneity in the shrub tundra ecotone in the Mackenzie Delta region, Northwest territories: Implications for Arctic environmental change. Ecosystems 13:194–204.

    Article  Google Scholar 

  • Lavoie M, Mack MC, Schuur EAG. 2011. Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. J Geophys Res Biogeosciences 116:1–14.

    Article  CAS  Google Scholar 

  • Loranty MM, Abbott BW, Blok D, Douglas TA, Epstein HE, Forbes BC, Jones BM, Kholodov AL, Kropp H, Malhotra A, Mamet SD, Myers-Smith IH, Natali SM, O’Donnell JA, Phoenix GK, Rocha AV, Sonnentag O, Tape KD, Walker DA. 2018. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15:5287–313.

    Article  CAS  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS. 2004. Ecosystem carbon storage in arctic tundra reduce by long-term nutrient fertilization. Nature 431:440–3.

    Article  CAS  PubMed  Google Scholar 

  • Makita N, Kosugi Y, Dannoura M, Takanashi S, Niiyama K, Kassim AR, Nik AR. 2012. Patterns of root respiration rates and morphological traits in 13 tree species in a tropical forest. Tree Physiol 32:303–12.

    Article  PubMed  Google Scholar 

  • Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH. 2003. Impacts of Fine Root Turnover on Forest NPP and Soil C Sequestration Potential. Science (80-) 302:1385–7.

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M. 2015. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–18.

    Article  PubMed  Google Scholar 

  • McCulloch LA. 2020. lmcculloch/AK2015: Variation in fine root characteristics and nutrient dynamics across Alaskan ecosystems. https://doi.org/10.5281/zenodo.3997566.

  • McCulloch LA, Natali S, Kholodov A, Loranty M. 2020. Fine root biomass and nutrient concentrations from Alaskan borehole sites, 2015 (ViPER project). Arct Data Cent.

  • McLaren JR, Buckeridge KM. 2019. Decoupled above-and belowground responses to multi-decadal nitrogen and phosphorus amendments in two tundra ecosystems. Ecosphere 10.

  • McLaren JR, Buckeridge KM, van de Weg MJ, Shaver GR, Schimel JP, Gough L. 2017. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition. Ecology 98:1361–76.

    Article  PubMed  Google Scholar 

  • Metcalfe DB, Williams M, Aragão LEOC, Da Costa ACL, De Almeida SS, Braga AP, Gonçalves PHL, Silva JDA, Malhi Y, Meir P. 2007. A method for extracting plant roots from soil which facilitates rapid sample processing without compromising measurement accuracy: Methods. New Phytol 174:697–703.

    Article  CAS  PubMed  Google Scholar 

  • Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC, Speed JDM, Boulanger-Lapointe N, Rixen C, Lévesque E, Schmidt NM, Baittinger C, Trant AJ, Hermanutz L, Collier LS, Dawes MA, Lantz TC, Weijers S, JØrgensen RH, Buchwal A, Buras A, Naito AT, Ravolainen V, Schaepman-Strub G, Wheeler JA, Wipf S, Guay KC, Hik DS, Vellend M. 2015. Climate sensitivity of shrub growth across the tundra biome. Nat Clim Chang 5:887–91.

  • Nadelhoffer KJ, Johnson L, Laundre J, Giblin AE, Shaver GR. 2002. Fine root production and nutrient content in wet and moist arctic tundras as influenced by chronic fertilization. Plant Soil. 242:107–13.

    Article  CAS  Google Scholar 

  • Natali S, Kholodov A. 2016. Understory percent cover by functional group from Alaska borehole sites, 2015 (ViPER project). Arct Data Cent.

  • Natali S, Kholodov A, Loranty M. 2016a. Active layer soil bulk density, moisture, carbon and nitrogen concentration and stable isotope data from Alaska borehole sites, 2015 (ViPER project). Arct Data Cent.

  • Natali S, Kholodov A, Loranty M. 2016b. Thaw depth and organic layer depth from Alaska borehole sites, 2015, 2017, 2018 (ViPER Project). Arct Data Cent.

  • Parker TC, Subke JA, Wookey PA. 2015. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob Chang Biol 21:2070–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearson RG, Phillips SJ, Loranty MM, Beck PSA, Damoulas T, Knight SJ, Goetz SJ. 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat Clim Chang 3:673–7.

    Article  Google Scholar 

  • R Development Core Team. 2020. A Language and Environment for Statistical Computing. Vienna, Austria. http://www.r-project.org.

  • Rasse DP, Rumpel C, Dignac M-F. 2005. Is soil carbon mostly root carbon? Mechanism for specific stabilisation. Plant Soil 269:341–56.

    Article  CAS  Google Scholar 

  • Raynolds MK, Walker DA, Epstein HE, Pinzon JE, Tucker CJ. 2012. A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sens Lett 3:403–11.

    Article  Google Scholar 

  • Raynolds MK, Walker DA, Maier HA. 2006. NDVI patterns and phytomass distribution in the circumpolar Arctic. Remote Sens Environ 102:271–81.

    Article  Google Scholar 

  • Reich PB. 2014. The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. J Ecol 102:275–301.

    Article  Google Scholar 

  • Reich PB, Tjoelker MG, Walters MB, Vanderklein DW, Buschena C. 1998. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct Ecol 12:327–38.

    Article  Google Scholar 

  • Robinson CH, Kirkham JB, Littlewood R. 1999. Decomposition of root mixtures from high arctic plants: A microcosm study. Soil Biol Biochem 31:1101–8.

    Article  CAS  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, Alward R, Beier C, Burke I, Canadell J, Callaghan T, Christensen TR, Fahnestock J, Fernandez I, Harte J, Hollister R, John H, Ineson P, Johnson MG, Jonasson S, John L, Linder S, Lukewille A, Masters G, Melillo J, Mickelsen A, Neill C, Olszyk DM, Press M, Pregitzer K, Robinson C, Rygiewiez PT, Sala O, Schmidt IK, Shaver G, Thompson K, Tingey DT, Verburg P, Wall D, Welker J, Wright R. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–62.

    Article  CAS  PubMed  Google Scholar 

  • Salmon VG, Schädel C, Bracho R, Pegoraro E, Celis G, Mauritz M, Mack MC, Schuur EAG. 2018. Adding depth to our understanding of nitrogen dynamics in permafrost soils. J Geophys Res Biogeosci 123:2497–512.

    Article  CAS  Google Scholar 

  • Salmon VG, Soucy P, Mauritz M, Celis G, Natali SM, Mack MC, Schuur EAG. 2016. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob Chang Biol 22:1927–41.

    Article  PubMed  Google Scholar 

  • Segal AD, Sullivan PF. 2014. Identifying the sources and uncertainties of ecosystem respiration in Arctic tussock tundra. Biogeochemistry 121:489–503.

    Article  CAS  Google Scholar 

  • Serreze MC, Barry RG. 2011. Processes and impacts of Arctic amplification: A research synthesis. Glob Planet Change 77:85–96. https://doi.org/10.1016/j.gloplacha.2011.03.004.

    Article  Google Scholar 

  • Shaver GR, Cutler JC. 1979. The vertical distribution of live vascular phytomass in cottongrass Tussock Tundra. Arct Alp Res 11:335.

    Article  Google Scholar 

  • Shen Y, Gilbert GS, Li W, Fang M, Lu H, Yu S. 2019. Linking aboveground traits to root traits and local environment: Implications of the plant economics spectrum. Front Plant Sci 10:1–12.

    Article  Google Scholar 

  • Silver WL, Miya RK. 2001. Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia 129:407–19.

    Article  PubMed  Google Scholar 

  • Sloan VL, Fletcher BJ, Phoenix GK. 2016. Contrasting synchrony in root and leaf phenology across multiple sub-Arctic plant communities. J Ecol 104:239–48.

    Article  CAS  Google Scholar 

  • Sloan VL, Fletcher BJ, Press MC, Williams M, Phoenix GK. 2013. Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems. Glob Chang Biol 19:3668–76.

    Article  PubMed  Google Scholar 

  • Street LE, Garnett MH, Subke JA, Baxter R, Dean JF, Wookey PA. 2020. Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils. Glob Chang Biol 26:4559–71.

    Article  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:1–11.

    Article  CAS  Google Scholar 

  • Thompson C, Beringer J, Chapin FS, McGuire AD. 2004. Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest. J Veg Sci 15:397–406.

    Article  Google Scholar 

  • Welp LR, Randerson JT, Liu HP. 2007. The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agric For Meteorol 147:172–85.

    Article  Google Scholar 

  • Wickham H. 2016. ggplot2: Elegant graphics for data analysis. New York: Springer.

    Book  Google Scholar 

  • Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen T, Miller E, Bache S, Müller K, Ooms J, Robinson D, Seidel D, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. 2019. Welcome to the Tidyverse. J Open Source Softw 4:1686.

    Article  Google Scholar 

  • Wookey PA, Aerts R, Bardgett RD, Baptist F, Bråthen K, Cornelissen JHC, Gough L, Hartley IP, Hopkins DW, Lavorel S, Shaver GR. 2009. Ecosystem feedbacks and cascade processes: Understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob Chang Biol 15:1153–72.

    Article  Google Scholar 

  • Xiang SR, Doyle A, Holden PA, Schimel JP. 2008. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol Biochem 40:2281–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Katie Heard, Sarah Hewitt, Alaina Norzagaray, Stan Skotnicki, and Karl Uy for their help in the field. We are grateful to Claudia Buszta, Dan Pucci, and Ana Tobio for their assistance in the laboratory processing samples. Funding for this research was provided by NSF PLR-1417745 to MML, NSF PLR-1417700 to SMN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay A. McCulloch.

Ethics declarations

Code used for the analyses and figures are archived in a GitHub repository (https://github.com/lmcculloch/AK2015/blob/master/McCulloch_ViPER_FineRoots_2020.R) and are published on Zenodo (https://doi.org/10.5281/zenodo.3997566). Data are publicly available and archived on the Arctic Data Center (https://arcticdata.io/catalog/view/doi%3A10.18739%2FA2ZS2KD6V).

Additional information

Author Contributions

L.A.M and M.M.L. conceived of the study. L.A.M., H.K., A.K., C.L.C., S.M.N., and M.M.L performed the research. L.A.M. analyzed the data and wrote the manuscript. All authors contributed to editing and reviewing the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1610 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCulloch, L.A., Kropp, H., Kholodov, A. et al. Variation in Fine Root Characteristics and Nutrient Dynamics Across Alaskan Ecosystems. Ecosystems 24, 1332–1347 (2021). https://doi.org/10.1007/s10021-020-00583-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00583-8

Keywords

Navigation