Skip to main content
Log in

The Cooling Trend of Canopy Temperature During the Maturation, Succession, and Recovery of Ecosystems

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The maximum exergy dissipation theory provides a theoretical basis for using surface temperature to measure the status and development of ecosystems, which could provide an early warning of rapid evaluation of ecosystem degradation. In the present study, we used the radiation balance of ecosystems to demonstrate this hypothesis theoretically. Further, we used empirical data to verify whether ecosystems gain more radiation, while lowering their surface temperatures, as they develop naturally. We analyzed 12 chronosequences from the FLUXNET database using meteorological data and heat fluxes. We included age, disturbance, and successional chronosequences across six climate zones. Net radiation (R n) and the ratio of net radiation to global radiation (R n/R g) were used to measure the energy gain of the ecosystems. The maximum daily air temperature above the canopy (T max) and thermal response number (TRN) were used to analyze the surface temperature trends with ecosystem natural development. The general trends of T max, TRN, R n, and R n /R g demonstrated that ecosystems become cooler and more stable, yet gain more energy, throughout their natural development. Among the four indicators, TRN showed the most consistent trends and highest sensitivity to ecosystem growth, succession, and recovery. Moreover, TRN was not significantly influenced by precipitation or wind. We propose that TRN can be used to rapidly evaluate or warn of ecosystem disturbance, senescence, and degradation without prior knowledge of species composition, nutrient status, and complex ecosystem processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  • Acevedo OC, da Silva R, Fitzjarrald DR, Moraes OLL, Sakai RK, Czikowsky MJ. 2008. Nocturnal vertical CO2 accumulation in two Amazonian ecosystems. J Geophys Res-Biogeo 113:G00B04.

    Article  Google Scholar 

  • Aerts R, Wagendorp T, November E, Behailu M, Deckers J, Muys B. 2004. Ecosystem thermal buffer capacity as an indicator of the restoration status of protected areas in the northern Ethiopian highlands. Restor Ecol 12:586–96.

    Article  Google Scholar 

  • Akbari MH. 1995. Energy-based indicators of ecosystem health. Department of crop science. Guelph, Ontario: University of Guelph.

    Google Scholar 

  • Amiro BD, Barr AG, Black TA, Iwashita H, Kljun N, McCaughey JH, Morgenstern K, Murayama S, Nesic Z, Orchansky AL, Saigusa N. 2006. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agr For Meteorol 136:237–51.

    Article  Google Scholar 

  • Arain AA, Restrepo-Coupe N. 2005. Net ecosystem production in a temperate pine plantation in southeastern Canada. Agr For Meteorol 128:223–41.

    Article  Google Scholar 

  • Asner GP, Keller M, Pereira R, Zweede JC, Silva JNM. 2004. Canopy damage and recovery after selective logging in Amazonia: field and satellite studies. Ecol Appl 14:S280–98.

    Article  Google Scholar 

  • Barr AG, Ricciuto DM, Schaefer K, Richardson A, Agarwal D, Thornton PE, Davis K, Jackson B, Cook RB, Hollinger DY, Cv Ingen, Amiro B, Andrews A, Arain MA, Baldocchi D, Black TA, Bolstad P, Curtis P, Desai A, Dragoni D, Flanagan L, Gu L, Katul G, Law BE, Lafleur P, Margoli H, Matamala R, Meyers T, McCaughey H, Monson R, Munger JW, Oechel W, Oren R, Roulet N, Torn M, Verma S. 2013. NACP Site: tower meteorology, flux observations with uncertainty, and ancillary data. Oak Ridge: Oak Ridge National Laboratory Distributed Active Archive Center.

    Google Scholar 

  • Bastable HG, Shuttleworth WJ, Dallarosa RLG, Fisch G, Nobre CA. 1993. Observations of climate, albedo, and surface radiation over cleared and undisturbed Amazonian forest. Int J Climatol 13:783–96.

    Article  Google Scholar 

  • Betts AK, Ball JH. 1997. Albedo over the boreal forest. J Geophys Res -Atmos 102:28901–9.

    Article  Google Scholar 

  • Bond-Lamberty B, Wang CK, Gower ST. 2004. Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Global Change Biol 10:473–87.

    Article  Google Scholar 

  • Campbell GS, Norman JM. 1998. Introduction to environmental biophysics. New York: Springer, xxi. pp 286.

  • Clark KL, Gholz HL, Moncrieff JB, Cropley F, Loescher HW. 1999. Environmental controls over net exchanges of carbon dioxide from contrasting Florida ecosystems. Ecol Appl 9:936–48.

    Article  Google Scholar 

  • Coursolle C, Margolis HA, Giasson MA, Bernier PY, Amiro BD, Arain MA, Barr AG, Black TA, Goulden ML, McCaughey JH, Chen JM, Dunn AL, Grant RF, Lafleur PM. 2012. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests. Agr For Meteorol 165:136–48.

    Article  Google Scholar 

  • Da Luz BR, Crowley JK. 2007. Spectral reflectance and emissivity features of broad leaf plants: prospects for remote sensing in the thermal infrared (8.0–14.0 μm). Remote Sens Environ 109:393–405.

    Article  Google Scholar 

  • Daniel S, Christian K. 2010. Infra-red thermometry of alpine landscapes challenges climate warming projections. Global Change Biol 16:2602–13.

    Google Scholar 

  • Dekker SC. 2013. Palaeoclimate: Biodiversity-dominated feedback. Nat Geosci 6:903–4.

    Article  CAS  Google Scholar 

  • Fath BD, Jørgensen SE, Patten BC, Straškraba M. 2004. Ecosystem growth and development. Biosystems 77:213–28.

    Article  PubMed  Google Scholar 

  • Fischer ML, Billesbach DP, Berry JA, Riley WJ, Torn MS. 2007. Spatiotemporal variations in growing season exchanges of CO2, H2O, and sensible heat in agricultural fields of the Southern Great Plains. Earth Interact 11:1–21.

    Article  Google Scholar 

  • Getling AV. 1998. Rayleigh-Bénard convection: structures and dynamics. Singapore: World Scientific.

    Book  Google Scholar 

  • Goulden ML, McMillan AMS, Winston GC, Rocha AV, Manies KL, Harden JW, Bond-Lamberty BP. 2011. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biol 17:855–71.

    Article  Google Scholar 

  • Holbo HR, Luvall JC. 1989. Modeling surface-temperature distributions in forest landscapes. Remote Sens Environ 27:11–24.

    Article  Google Scholar 

  • Hollinger DY, Ollinger SV, Richardson AD, Meyers TP, Dail DB, Martin ME, Scott NA, Arkebauer TJ, Baldocchi DD, Clark KL, Curtis PS, Davis KJ, Desai AR, Dragoni D, Goulden ML, Gu L, Katul GG, Pallardy SG, Paw KT, Schmid HP, Stoy PC, Suyker AE, Verma SB. 2010. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Global Change Biol 16:696–710.

    Article  Google Scholar 

  • Jørgensen SE, Patten BC, Straskraba M. 2000. Ecosystems emerging: 4. growth. Ecol Model 126:249–84.

    Article  Google Scholar 

  • Jenerette GD, Harlan S, Buyantuev A, Stefanov W, Declet-Barreto J, Ruddell B, Myint S, Kaplan S, Li X. 2016. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc Ecol 31:745–60.

    Article  Google Scholar 

  • Jin YF, Randerson JT, Goulden ML, Goetz SJ. 2012. Post-fire changes in net shortwave radiation along a latitudinal gradient in boreal North America. Geophys Res Lett 39:L13403.

    Article  Google Scholar 

  • Juang JY, Katul G, Siqueira M, Stoy P, Novick K. 2007. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys Res Lett 34:L21408.

    Article  Google Scholar 

  • Kay JJ, Allen T, Fraser R, Luvall JC, Ulanowicz R. 2001. Can we use energy based indicators to characterize and measure the status of ecosystems, human, disturbed and natural? Proceedings of the international wordshop: Advances in Energy Studies: exploring supplies, constraints and strategies: Porto Venere, Italy, 23–27 May, 2000. pp 2121–2133.

  • Kleidon A, Fraedrich K, Heimann M. 2000. A green planet versus a desert world: Estimating the maximum effect of vegetation on the land surface climate. Clim Change 44:471–93.

    Article  Google Scholar 

  • Krishnan P, Black TA, Jassal RS, Chen BZ, Nesic Z. 2009. Interannual variability of the carbon balance of three different-aged Douglas-fir stands in the Pacific Northwest. J Geophys Res-Biogeosci 114:G04011.

    Article  Google Scholar 

  • Law BE, Sun OJ, Campbell J, Van Tuyl S, Thornton PE. 2003. Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biol 9:510–24.

    Article  Google Scholar 

  • Law BE, Thornton PE, Irvine J, Anthoni PM, Van Tuyl S. 2001. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biol 7:755–77.

    Article  Google Scholar 

  • Leinonen I, Jones HG. 2004. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J Exp Bot 55:1423–31.

    Article  CAS  PubMed  Google Scholar 

  • Leuschner C, Rode MW. 1999. The role of plant resources in forest succession: changes in radiation, water and nutrient fluxes, and plant productivity over a 300-yr-long chronosequence in NW-Germany. Perspect Plant Ecol Evol Syst 2:103–47.

    Article  Google Scholar 

  • Lin H, Cao M, Stoy PC, Zhang YP. 2009. Assessing self-organization of plant communities-A thermodynamic approach. Ecol Model 220:784–90.

    Article  Google Scholar 

  • Lin H, Cao M, Zhang YP. 2011. Self-organization of tropical seasonal rain forest in southwest China. Ecol Model 222:2812–16.

    Article  Google Scholar 

  • Lipson DA, Wilson RF, Oechel WC. 2005. Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a chaparral ecosystem. Appl Environ Microb 71:8573–80.

    Article  CAS  Google Scholar 

  • Liu HP, Randerson JT, Lindfors J, Chapin FS. 2005. Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective. J Geophys Res-Atmos 110:D13101.

    Article  Google Scholar 

  • Liu X, Wang CL, Jing YS, Mai BR. 2011. Study on annual variation and simulation of temperature in four urban underlying surfaces. J Trop Meteorol 27:373–8.

    Google Scholar 

  • Maes WH, Pashuysen T, Trabucco A, Veroustraete F, Muys B. 2011. Does energy dissipation increase with ecosystem succession? Testing the ecosystem exergy theory combining theoretical simulations and thermal remote sensing observations. Ecol Model 222:3917–41.

    Article  Google Scholar 

  • Michael LG, Scott DM, Humberto RR, Mary CM, Helber CF, Adelaine MSF, Cleilim ADS. 2004. Diel and seasonal patterns of tropical forest CO2 exchange. Ecol Appl 14:42–54.

    Article  Google Scholar 

  • Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui DF, Jarvis AJ, Kattge J, Noormets A, Stauch VJ. 2007. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agr Forest Meteorol 147:209–32.

    Article  Google Scholar 

  • Monteith JL, Unsworth MH. 2008. Principles of environmental physics. Amsterdam; Boston: Elsevier, xxi. pp 418.

  • Norris C, Hobson P, Ibisch PL. 2012. Microclimate and vegetation function as indicators of forest thermodynamic efficiency. J Appl Ecol 49:562–70.

    Google Scholar 

  • Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D. 2006. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3:571–83.

    Article  CAS  Google Scholar 

  • Pataki DE, Oren R. 2003. Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Adv Water Resour 26:1267–78.

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA. 2007. Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sc 11:1633–44.

    Article  Google Scholar 

  • Peichl M, Arain MA, Brodeur JJ. 2010. Age effects on carbon fluxes in temperate pine forests. Agr Forest Meteorol 150:1090–101.

    Article  Google Scholar 

  • Raupach MR. 1994. Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Bound-Lay Meteorol 71:211–16.

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biol 11:1424–39.

    Article  Google Scholar 

  • Rubio E, Caselles V, Badenas C. 1997. Emissivity measurements of several soils and vegetation types in the 8–14 μm wave band: Analysis of two field methods. Remote Sens Environ 59:490–521.

    Article  Google Scholar 

  • Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, da Rocha HR, de Camargo PB, Crill P, Daube BC, de Freitas HC, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H. 2003. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–7.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G. 2009. Early-warning signals for critical transitions. Nature 461:53–9.

    Article  CAS  PubMed  Google Scholar 

  • Schneider ED, Kay JJ. 1994. Life as a manifestation of the 2nd law of thermodynamics. Math Comput Model 19:25–48.

    Article  Google Scholar 

  • Scott DM, Michael LG, Mary CM, Humberto RR, Helber CF, Adelaine MSF, Cleilim ADS. 2004. Biometric and micrometeorological measurements of tropical forest carbon balance. Ecol Appl 14:S114–26.

    Article  Google Scholar 

  • Staal A, Dekker SC, Hirota M, van Nes EH. 2015. Synergistic effects of drought and deforestation on the resilience of the south-eastern Amazon rainforest. Ecol Complex 22:65–75.

    Article  Google Scholar 

  • Stoy PC, Katul GG, Siqueira MBS, Juang JY, Novick KA, McCarthy HR, Oishi AC, Oren R. 2008. Role of vegetation in determining carbon sequestration along ecological succession in the southeastern United States. Global Change Biol 14:1409–27.

    Article  Google Scholar 

  • Stoy PC, Katul GG, Siqueira MBS, Juang JY, Novick KA, McCarthy HR, Oishi AC, Uebelherr JM, Kim HS, Oren R. 2006. Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US. Global Change Biol 12:2115–35.

    Article  Google Scholar 

  • Wang S. 2005. Dynamics of surface albedo of a boreal forest and its simulation. Ecol Model 183:477–94.

    Article  Google Scholar 

  • Weng QH, Lu DS, Schubring J. 2004. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89:467–83.

    Article  Google Scholar 

  • Zha T, Barr AG, Black TA, McCaughey JH, Bhatti J, Hawthorne I, Krishnan P, Kidston J, Saigusa N, Shashkov A, Nesic Z. 2009. Carbon sequestration in boreal jack pine stands following harvesting. Global Change Biol 15:1475–87.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This study was funded by the Applied Fundamental Research Program of Yunnan Province (2013FB078), National Natural Science Foundation of China (NSFC, 31200307), the CAS 135 program (XTBG-F01), US NSF EF #1241881, and the MT Institute on Ecosystems. The flux and meteorological data in the present research were acquired from the AmeriFlux (supported by US Department of Energy), Fluxnet-Canada Research Network (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), and NASA’s Terrestrial Ecology program (LBA-ECO) (supported by NASA Earth Science office) as part of global FLUXNET. We thank Professor Richard Corlett and Dr. Yajun Chen for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Lin.

Additional information

Author contributions

HL designed the study, performed data analysis and wrote the first draft. ZF and LS draw some of the figures and performed data analysis. AA, HM, DB, MS, RB, and WO provided the data. All authors contributed substantially to revisions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Supplementary material 2 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Fan, Z., Shi, L. et al. The Cooling Trend of Canopy Temperature During the Maturation, Succession, and Recovery of Ecosystems. Ecosystems 20, 406–415 (2017). https://doi.org/10.1007/s10021-016-0033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-0033-8

Key words

Navigation