Skip to main content

Advertisement

Log in

Molybdenum dioxide hollow microspheres for cathode material in rechargeable hybrid battery using magnesium anode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new type of hybrid battery has been assembled with magnesium metal anode, hollow MoO2 microsphere cathode, and dual-salt electrolyte containing Mg2+ and Li+ ions. This kind of hybrid battery not only avoids metallic dendrite formation, which occurs in rechargeable lithium battery, but also ensures high-capacity intercalation reaction in the cathode, which is still a bottleneck for rechargeable magnesium battery. It is found that the morphology of MoO2 electrode has a great effect on its electrochemical performance. The hollow MoO2 microsphere cathode delivers an initial discharge capacity of 217.2 mAh g−1 with the coulombic efficiency of ca. 88 %. In the following cycles, its coulombic efficiency reaches nearly 100 %. In contrast, MoO2 solid particles with a size of 1–10 μm exhibit a capacity less than 50 mAh g−1. Inductively coupled plasma (ICP) analysis reveals that both of Mg2+ and Li+ ions take part in the cathode intercalation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu J (2013) Addressing the grand challenges in energy storage. Adv Funct Mater 23:924–928

    Article  CAS  Google Scholar 

  2. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  Google Scholar 

  3. Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi DW, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:357–361

    Article  Google Scholar 

  4. Wang H, Cui YF, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980

    Article  CAS  Google Scholar 

  5. Todd A, Ferguson P, Fleischauer M, Dahn J (2010) Tin-based materials as negative electrodes for Li-ion batteries: combinatorial approaches and mechanical methods. Int J Energy Res 34:535–555

    Article  Google Scholar 

  6. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  7. Haynes WM (2013) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  8. Kim HS, Arthur TS, Allred GD, Zajicek J, Newman JG, Rodnyansky AE, Oliver AG, Boggess WC, Muldoon J (2011) Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun 2:427

    Article  Google Scholar 

  9. Matsui M (2011) Study on electrochemical deposited Mg metal. J Power Sources 196:7048–7055

    Article  CAS  Google Scholar 

  10. Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgemann R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407:724–727

    Article  CAS  Google Scholar 

  11. Aurbach D, Schechter A, Moshkovich M, Cohen Y (2001) On the mechanism of reversible magnesium deposition processes. J Electrochem Soc 148:A1004–A1014

    Article  CAS  Google Scholar 

  12. Aurbach D, Gizbar H, Schechter A, Chusid O, Gottlieb HE, Cohen Y, Goldberg IJ (2002) Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J Electrochem Soc 149:A115–A121

    Article  CAS  Google Scholar 

  13. Aurbach D, Suresh GS, Levi E, Mitelman A, Mizrahi O, Chusid O, Brunelli M (2007) Progress in rechargeable magnesium battery technology. Adv Mater 19:4260–4267

    Article  CAS  Google Scholar 

  14. Mizrahi O, Amir N, Pollak E, Chusid O, Marks V, Gottlieb H, Larush L, Zinigard E, Aurbach D (2008) Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries. J Electrochem Soc 155:A103–A109

    Article  CAS  Google Scholar 

  15. Pour N, Gofer Y, Major DT, Aurbach D (2011) Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J Am Chem Soc 133:6270–6278

    Article  CAS  Google Scholar 

  16. Guo YS, Zhang F, Yang J, Wang FF (2012) Electrochemical performance of novel electrolyte solutions based on organoboron magnesium salts. Electrochem Commun 18:24–27

    Article  CAS  Google Scholar 

  17. Guo YS, Zhang F, Yang J, Wang FF, NuLi YN, Hirano SI (2012) Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy Environ Sci 5:9100–9106

    Article  CAS  Google Scholar 

  18. Wang FF, Guo YS, Yang J, NuLi YN, Hirano SI (2012) A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries. Chem Commun 48:10763–10765

    Article  CAS  Google Scholar 

  19. Barron AR (1995) The Al-O bond interaction in four-coordinate aluminum aryloxide compounds. Polyhedron 14:3197–3207

    Article  CAS  Google Scholar 

  20. Zhao-Karger Z, Zhao XY, Wang D, Diemant T, Behem RJ, Fichtner M (2014). Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv Energy Mater 5. doi: 10.1002/aenm.201401155

  21. Levi E, Mitelman A, Aurbach D, Brunelli M (2007) Structural mechanism of the phase transitions in the Mg–Cu–Mo6S8 system probed by ex situ synchrotron X-ray diffraction. Chem Mater 19:5131–5142

    Article  CAS  Google Scholar 

  22. Yagi S, Ichitsubo T, Shirai Y, Yanai S, Doi T, Murase K, Matsubara E (2014) A concept of dual-salt polyvalent-metal storage battery. J Mater Chem A 2:1144–1149

    Article  CAS  Google Scholar 

  23. Cheng YW, Shao YY, Zhang JG, Sprenkle VL, Liu J, Li GS (2014) High performance batteries based on hybrid magnesium and lithium chemistry. Chem Commun 50:9644–9646

    Article  CAS  Google Scholar 

  24. Tuerxum F, Abulizi Y, NuLi YN, Su SJ, Yang J, Wang JL (2014) High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries. J Power Sources 276:255–261

    Article  Google Scholar 

  25. Shi Y, Guo B, Corr SA, Shi Q, Hu YS, Heier KR, Chen L, Seshadri R, Stucky GD (2009) Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett 9:4215–4220

    Article  CAS  Google Scholar 

  26. Sun Y, Hu X, Luo W, Huang Y (2011) Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano 5:7100–7107

    Article  CAS  Google Scholar 

  27. Ku JH, Jung YS, Lee KT, Kim CH, Oh SM (2009) Thermoelectrochemically activated MoO2 powder electrode for lithium secondary batteries. J Electrochem Soc 156:A688–A693

    Article  CAS  Google Scholar 

  28. Fang XP, Guo BK, Shi YF, Li B, Hua CX, Yao CH, Zhang YC, Hu YS, Wang ZX, Stucky GD, Chen LQ (2012) Enhanced Li storage performance of ordered mesoporous MoO2 via tungsten doping. Nanoscale 4:1541–1544

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang.

Additional information

Wanjing Pan and Xiaolin Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Liu, X., Miao, X. et al. Molybdenum dioxide hollow microspheres for cathode material in rechargeable hybrid battery using magnesium anode. J Solid State Electrochem 19, 3347–3353 (2015). https://doi.org/10.1007/s10008-015-2971-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2971-z

Keywords

Navigation