Skip to main content
Log in

Dandelion-like α-MnO2 hollow spheres with superior catalytic performance for Li-O2 batteries by a facile in situ pyrolysis

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To reduce the severe overpotential of oxygen reduction and evolution reaction (ORR and OER) for rechargeable Li-O2 batteries, the dandelion-like α-MnO2 hollow spheres (HS) with high surface area (105.54 m2 g−1) were prepared by a facile in situ pyrolysis of manganese alkoxide for the first time. The ORR diffusion limiting current density and OER current density at 1.0 versus (Ag/AgCl)/V are 6.32 and 45.82 mA cm−2 at 1600 rpm in alkaline solution, respectively, indicating that dandelion-like α-MnO2-HS catalyst exhibits superior bifunctional catalytic activity. The Li-O2 batteries with α-MnO2-HS catalyst can yield high initial discharge specific capacity of 7897.6 mA h g−1 at 100 mA g−1. Moreover, the cycle life of Li-O2 batteries with α-MnO2-HS catalyst is significantly improved and can sustain 108 cycles. These results indicate that as-fabricated hollow sphere structure without adding any hard templates is favorable for superior bifunctional catalytic activity in aqueous and non-aqueous electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Scheme 1
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 2

Similar content being viewed by others

References

  1. Cao C, Xie J, Zhang S, Pan B, Cao G, Zhao X (2017) Graphene-like δ-MnO2 decorated with ultrafine CeO2 as a highly efficient catalyst for long-life lithium-oxygen batteries. J Mater Chem A 5:6747–6755

    Article  Google Scholar 

  2. Park HW, Lee DU, Nazar LF, Chen Z (2013) Oxygen reduction reaction using MnO2 nanotubes/nitrogen-doped exfoliated graphene hybrid catalyst for Li-O2 battery applications. J Electrochem Soc 160:A344–A350

    Article  Google Scholar 

  3. Han X, Cheng F, Chen C, Li F, Chen J (2016) A Co3O4@MnO2/Ni nanocomposite as a carbon- and binder-free cathode for rechargeable Li-O2 batteries. Inorg Chem Front 3:866–871

    Article  Google Scholar 

  4. Ni W, Liu S, Fei Y, He Y, Ma X, Lu L, Deng Y (2017) Preparation of carbon nanotubes/manganese dioxide composite catalyst with fewer oxygen-containing groups for Li-O2 batteries using polymerized ionic liquids as sacrifice agent. Acs Appl Mater Inter 9:14749–14757

    Article  Google Scholar 

  5. Jian Z, Liu P, Li F, He P, Guo X, Chen M, Zhou H (2014) Core-shell-structured CNT@ RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew Chem Int Edit 53:442–446

    Article  Google Scholar 

  6. Yilmaz E, Yogi C, Yamanaka K, Ohta T, Byon HR (2013) Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. Nano Lett 13:4679–4684

    Article  Google Scholar 

  7. Jung HG, Jeong YS, Park JB, Sun YK, Scrosati B, Lee YJ (2013) Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium–air batteries. ACS Nano 7:3532–3539

    Article  Google Scholar 

  8. Zhang P, He M, Xu S, Yan X (2015) The controlled growth of porous δ-MnO2 nanosheets on carbon fibers as a bi-functional catalyst for rechargeable lithium-oxygen batteries. J Mater Chem A 3:10811–10818

    Article  Google Scholar 

  9. Lu X, Zhang L, Sun X, Si W, Yan C, Schmidt OG (2016) Bifunctional Au-Pd decorated MnOx nanomembranes as cathode materials for Li-O2 batteries. J Mater Chem A 4:4155–4160

    Article  Google Scholar 

  10. Xue H, Wu S, Tang J, Gong H, He P, He J, Zhou H (2016) Hierarchical porous nickel cobaltate nanoneedle arrays as flexible carbon-protected cathodes for high-performance lithium–oxygen batteries. Acs Appl Mater Inter 8:8427–8435

    Article  Google Scholar 

  11. Hu X, Cheng F, Han X, Zhang T, Chen J (2015) Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li-O2 batteries. Small 11:809–813

    Article  Google Scholar 

  12. Guo Z, Zhou D, Dong X, Qiu Z, Wang Y, Xia Y (2013) Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li-O2 batteries. Adv Mater 25:5668–5672

    Article  Google Scholar 

  13. Li L, Manthiram A (2014) O- and N- doped carbon nanowebs as metal-free catalysts for hybrid Li-Air batteries. Adv Energy Mater 4:1066–1070

    Google Scholar 

  14. Wang X, Li Y (2003) Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem-Eur J 9:300–306

    Article  Google Scholar 

  15. Feng Q (2010) Synthesis and applications of manganese oxide nanotubes. Inorg Met Nanotub Mater 117:73–82

    Google Scholar 

  16. Li H, Wang WL, Pan F, Xin X, Chang Q, Liu X (2011) Synthesis of single-crystalline α-MnO2 nanotubes and structural characterization by HRTEM. Mat Sci Eng B Adv 176:1054–1057

    Article  Google Scholar 

  17. Luo J, Zhu HT, Fan HM, Liang JK, Shi HL, Rao GH, Shen ZX (2008) Synthesis of single-crystal tetragonal α-MnO2 nanotubes. J Phys Chem C 112:12594–12598

    Article  Google Scholar 

  18. Li Q, Olson JB, Penner RM (2004) Nanocrystalline α-MnO2 nanowires by electrochemical step-edge decoration. Chem Mater 16:3402–3405

    Article  Google Scholar 

  19. Ju SH, Kang YC (2008) Nano-sized manganese oxide particles prepared by low-pressure spray pyrolysis using FEAG process. Mater Res Bull 43:590–600

    Article  Google Scholar 

  20. Cheng JH, Shao G, Yu HJ, Xu JJ (2010) Excellent catalytic and electrochemical properties of the mesoporous MnO2 nanospheres/nanosheets. J Alloy Compd 505:163–167

    Article  Google Scholar 

  21. Liu T, Jiang C, You W, Yu J (2017) Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance. J Mater Chem. A 5:8635–8643

    Article  Google Scholar 

  22. Sun X, Liu J, Li Y (2006) Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem-Eur J 12:2039–2047

    Article  Google Scholar 

  23. Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298:1006–1009

    Article  Google Scholar 

  24. Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Söderlund H, Martin CR (2002) Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124:11864–11865

    Article  Google Scholar 

  25. Caruso RA, Schattka JH, Greiner A (2001) Titanium dioxide tubes from sol–gel coating of electrospun polymer fibers. Adv Mater 13:1577–1579

    Article  Google Scholar 

  26. Munaiah Y, Raj BGS, Kumar TP, Ragupathy P (2013) Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior. J Mater Chem A 1:4300–4306

    Article  Google Scholar 

  27. Huang SZ, Cai Y, Jin J, Liu J, Li Y, Yu Y, Su BL (2015) Hierarchical mesoporous urchin-like Mn3O4/carbon microspheres with highly enhanced lithium battery performance by in situ carbonization of new lamellar manganese alkoxide (Mn-DEG). Nano Energy 12:833–844

    Article  Google Scholar 

  28. Débart A, Paterson AJ, Bao J, Bruce PG (2008) α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Edit 47:4521–4524

    Article  Google Scholar 

  29. Cheng F, Su Y, Liang J, Tao Z, Chen J (2010) MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem Mater 22:898–905

    Article  Google Scholar 

  30. Jin L, Xu L, Morein C, Chen CH, Lai M, Dharmarathna S, Suib SL (2010) Titanium containing γ-MnO2 (TM) hollow spheres: one-step synthesis and catalytic activities in Li/Air batteries and oxidative chemical reactions. Adv Funct Mater 20:3373–3382

    Article  Google Scholar 

  31. Li Y, Tan H, Yang XY, Goris B, Verbeeck J, Bals S, Su BL (2011) Well shaped Mn3O4 nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties. Small 7:475–483

    Article  Google Scholar 

  32. Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L (2011) Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc 133:933–940

    Article  Google Scholar 

  33. Li Y, Yang XY, Rooke J, Van Tendeloo G, Su BL (2010) Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance. J Colloid Interf Sci 348:303–312

    Article  Google Scholar 

  34. Liu J, Jin J, Deng Z, Huang SZ, Hu ZY, Wang L, Su BL (2012) Tailoring CuO nanostructures for enhanced photocatalytic property. J Colloid Interf Sci 384:1–9

    Article  Google Scholar 

  35. Liu S, Zhu Y, Xie J, Huo Y, Yang HY, Zhu T, Zhang S (2014) Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries. Adv Energy Mater 4:1–9

    Google Scholar 

  36. Wang G, Huang L, Huang W, Xie J, Du G, Zhang S, Zhao X (2015) Nanostructured porous RuO2/MnO2 as a highly efficient catalyst for high-rate Li-O2 batteries. Nanoscale 7:20614–20624

    Article  Google Scholar 

  37. Brock SL, Sanabria M, Suib SL, Urban V, Thiyagarajan P, Potter DI (1999) Particle size control and self-assembly processes in novel colloids of nanocrystalline manganese oxide. J Phys Chem B 103:7416–7428

    Article  Google Scholar 

  38. Santos VP, Pereira MFR, Órfão JJM, Figueiredo JL (2010) The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl Catal B-Environ 99:353–363

    Article  Google Scholar 

  39. Hou J, Liu L, Li Y, Mao M, Lv H, Zhao X (2013) Tuning the K+ concentration in the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation. Environ Sci Technol 47:13730–13736

    Article  Google Scholar 

  40. Sun L, Cao Q, Hu B, Li J, Hao J, Jing G, Tang X (2011) Synthesis, characterization and catalytic activities of vanadium-cryptomelane manganese oxides in low-temperature NO reduction with NH3. App Catal A-Gen 393:323–330

    Article  Google Scholar 

  41. Tang X, Li J, Hao J (2010) Significant enhancement of catalytic activities of manganese oxide octahedral molecular sieve by marginal amount of doping vanadium. Catal Commun 11:871–875

    Article  Google Scholar 

  42. Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y (2012) Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ Sci Technol 46:4034–4041

    Article  Google Scholar 

  43. Gong K, Yu P, Su L, Xiong S, Mao L (2007) Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen. J Phys Chem C 111:1882–1887

    Article  Google Scholar 

  44. Roche I, Chaînet E, Chatenet M, Vondrák J (2007) Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism. J Phys Chem C 111:1434–1443

    Article  Google Scholar 

  45. Hu FP, Zhang XG, Xiao F, Zhang JL (2005) Oxygen reduction on Ag-MnO2/SWNT and Ag-MnO2/AB electrodes. Carbon 43:2931–2936

    Article  Google Scholar 

  46. Ma Y, Wang R, Wang H, Key J, Ji S (2015) Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. J Power Sources 280:526–532

    Article  Google Scholar 

  47. Huang W, Zhong H, Li D, Tang P, Feng Y (2015) Reduced graphene oxide supported CoO/MnO2 electrocatalysts from layered double hydroxides for oxygen reduction reaction. Electrochim Acta 173:575–580

    Article  Google Scholar 

  48. Shi C, Zang GL, Zhang Z, Sheng GP, Huang YX, Zhao GX, Yu HQ (2014) Synthesis of layered MnO2 nanosheets for enhanced oxygen reduction reaction catalytic activity. Electrochim Acta 132:239–243

    Article  Google Scholar 

  49. Xiao W, Wang D, Lou XW (2010) Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction. J Phys Chem C 114:1694–1700

    Article  Google Scholar 

  50. Laoire C, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2011) Rechargeable lithium/TEGDME-LiPF6/O2 battery. J Electrochem Soc 158:302–308

    Article  Google Scholar 

  51. Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) An improved high-performance lithium-air battery. Nat Chem 4:579–585

    Article  Google Scholar 

  52. Lee JH, Black R, Popov G, Pomerantseva E, Nan F, Botton GA, Nazar LF (2012) The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium–oxygen batteries. Energ. Environ Sci 5:9558–9565

    Article  Google Scholar 

  53. Han X, Hu Y, Yang J, Cheng F, Chen J (2014) Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li-O2 batteries. Chem Commun 50:1497–1499

    Article  Google Scholar 

  54. Liu Y, Cao LJ, Cao CW, Wang M, Leung KL, Zeng SS, Lu ZG (2014) Facile synthesis of spinel CuCo2O4 nanocrystals as high-performance cathode catalysts for rechargeable Li-air batteries. Chem Commun 50:14635–14638

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (Grant Numbers 51372191, 51102189), National Basic Research Program of China (Grant Number 2015CB656401). The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanxing Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4097 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yu, Z., Liu, H. et al. Dandelion-like α-MnO2 hollow spheres with superior catalytic performance for Li-O2 batteries by a facile in situ pyrolysis. J Mater Sci 53, 14525–14535 (2018). https://doi.org/10.1007/s10853-018-2629-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2629-1

Keywords

Navigation