Skip to main content
Log in

Preparation and characterization of Sb2O5-doped Ti/RuO2-ZrO2 for dye decolorization by means of active chlorine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Textile industry is one of the major generators of wastewaters containing recalcitrant compounds such as dyes that jeopardize public health and environment. Electro-oxidation is an alternative method for treating recalcitrant compounds, and the key element for efficient degradation is the adequate use of dimensionally stable anode (DSA) electrodes to efficiently generate active chlorine, which degrades dyes contained in effluents into more environment-friendly compounds. This work is thereby aimed at preparing a novel DSA electrode for efficient generation of active chlorine. Two different dimensionally stable anodes (Ti/RuO2 and Sb2O5-doped Ti/RuO2-ZrO2) were prepared and then characterized by grazing incidence X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy, which corroborated the presence of RuO2, ZrO2, and Sb2O5. The comparison of electroactive areas, assessed by chronoamperometry, showed that Zr helps increase the area of the ternary electrode facilitating the formation of active chlorine. Active chlorine formation was further studied by cyclic voltammetry that revealed a reduction peak attributed to chlorine (product of chloride oxidation). Additionally, decolorization of model solutions that simulate textile effluents containing indigo carmine and reactive black 5 in media with and without chlorides was performed. In the chloride-containing medium, decolorization occurred at a faster rate than in the presence of sulfates. Decolorization of carmine indigo and reactive black 5 in the chloride-containing medium took 40 min and 2 h, respectively. In conclusion, the DSA electrode made of Sb2O5-doped Ti/RuO2-ZrO2 can efficiently generate the active chlorine for degradation of recalcitrant compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569

    Article  CAS  Google Scholar 

  2. Kapalka A, Fóti G, Comninellis C (2008) Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. J Appl Electrochem 38:7–16

    Article  CAS  Google Scholar 

  3. Malpass GRP, Miwa DW, Mortari DA, Machado SAS, Motheo AJ (2007) Decolorisation of real textile waste using electrochemical techniques: effect of the chloride concentration. Water Res 41:2969–2977

    Article  CAS  Google Scholar 

  4. Costa CR, Montilla F, Morallón E, Olivi P (2009) Electrochemical oxidation of acid black 210 dye on the boron-doped diamond electrode in the presence of phosphate ions: Effect of current density, pH and chloride ions. Electrochim Acta 54:7048–7055

    Article  CAS  Google Scholar 

  5. Aquino JM, Pereira GF, Rocha-Filho RC, Bocchi N, Biaggio SR (2011) Electrochemical degradation of a real textile effluent using boron-doped diamond or β-PbO2 as anode. J Hazard Mater 192:1275–1282

    Article  CAS  Google Scholar 

  6. Kraft A (2007) Doped diamond: a compact review on a new, versatile electrode material. Int J Electrochem Sci 2:355–385

    CAS  Google Scholar 

  7. Murugananthan M, Latha SS, Raju GB, Yoshihara S (2010) Anodic oxidation of ketoprofen: an anti-inflammatory drug using boron-doped diamond and platinum electrodes. J Hazard Mater 180:753–758

    Article  CAS  Google Scholar 

  8. Boudreau J, Bejan D, Li S, Bunce NJ (2010) Competition between electrochemical advanced oxidation and electrochemical hypochlorination of sulfamethoxazole at a boron-doped diamond anode. Ind Eng Chem Res 49:2537–2542

    Article  CAS  Google Scholar 

  9. Kraft A (2008) Electrochemical water disinfection: a short review. Platin Met Rev 52:177–1850

    Article  CAS  Google Scholar 

  10. Da Silva RG, Neto SA, De Andrade AR (2011) Electrochemical degradation of reactive dyes at different DSA® compositions. J Braz Chem Soc 22:126–133

    Article  Google Scholar 

  11. Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ 87:105–145

    Article  Google Scholar 

  12. Scialdone O, Galia A, Sabatino S (2014) Abatement of Acid Orange 7 in macro and micro reactors Effect of the electrocatalytic route. Appl Catal B Environ 148:473–483

    Article  Google Scholar 

  13. Panizza M, Cerisola G (2003) Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine. Electrochim Acta 48:1515–1519

    Article  CAS  Google Scholar 

  14. Cheng J, Zhang H, Chen G, Zhang Y (2008) Degradation characteristics of IrO2-type DSA® in metanol aqueous solutions. Electrochim Acta 53:3127–3138

    Article  Google Scholar 

  15. Chen S, Zheng Y, Wang S, Chen X (2011) Ti/RuO2-Sb2O5-SnO2 electrodes for chlorine evolution from seawater. Chem Eng J 172:47–51

    Article  CAS  Google Scholar 

  16. Chen X, Chen G, Yue PL (2001) Stable Ti/IrOx-Sb2O5-SnO2 anode for O2 evolution with low Ir content. J Phys Chem 105:4623–4628

    Article  CAS  Google Scholar 

  17. Comninellis C, Vercesi GP (1991) Characterization of DSA®-type oxygen evolving electrodes: choice of a coating. J Appl Electrochem 21:335–345

    Article  CAS  Google Scholar 

  18. Wang X, Hu J, Zhang J (2010) IrO2-SiO2 binary oxide films: preparation, physiochemical characterization and their electrochemical properties. Electrochim Acta 55:4587–4593

    Article  CAS  Google Scholar 

  19. Chen X, Chen G (2005) Stable Ti/RuO2-Sb2O5-SnO2 electrodes for O2 evolution. Electrochim Acta 50:4155–4159

    Article  CAS  Google Scholar 

  20. Chen G, Chen X, Yue PL (2002) Electrochemical behavior of novel Ti/IrOx-Sb2O5-SnO2 anodes. J Phys Chem 106:4364–4369

    Article  CAS  Google Scholar 

  21. De Faria LA, Boodts J-J FC, Trasatti S (1997) Electrocatalytic properties of Ru+Ti+Ce mixed oxide electrodes for the Cl2 evolution reaction. Electrochim Acta 42:3525–3530

    Article  Google Scholar 

  22. Fathollahi F, Javanbakht M, Norouzi P, Ganjali MR (2011) Comparison of morphology, stability and electrocatalytic properties of Ru0.3Ti0.7O2 and Ru0.3Ti0.4Ir0.3O2 coated titanium anodes. Russ J Electrochem 47:1281–1286

    Article  CAS  Google Scholar 

  23. Al-Kuhaili MF, Durrani SMA (2011) Effect of annealing on pulsed laser deposited zirconium oxide thin films. J Alloy Compd 509:9536–9541

    Article  CAS  Google Scholar 

  24. Torres LM, Gil A, Galicia L, Gonzalez I (1996) Understanding the difference between inner- and outer-sphere mechanisms. J Chem Educ 73:808–810

    Article  CAS  Google Scholar 

  25. Camara R, Trasatti S (1996) Surface electrochemical properties of Ti/(RuO2, + ZrO2,) electrodes. Electrochem Acta 41:419–427

    Article  CAS  Google Scholar 

  26. Malpass GRP, Miwa DW, Machado SAS, Motheo AJ (2010) SnO2-based materials for pesticide degradation. J Hazard Mater 180:145–151

    Article  CAS  Google Scholar 

  27. Costa CR, Botta CMR, Espindola ELG, Olivi P (2008) Electrochemical treatment of tannery wastewater using DSA® electrodes. J Hazard Mater 153:616–627

    Article  CAS  Google Scholar 

  28. Trieu V, Schley B, Natter H, Kintrup J, Bulan A, Hempelmann R (2012) RuO2-based anodes with tailored surface morphology for improved chlorine electro-activity. Electrochim Acta 78:188–194

    Article  CAS  Google Scholar 

  29. Yi Z, Kangning C, Wei W, Wang J, Lee S (2007) Effect of IrO2 loading on RuO2-IrO2-TiO2 anodes: a study of microstructure and working life for the chlorine evolution reaction. Ceram Int 33:1087–1091

    Article  Google Scholar 

  30. Cheng J, Zhang H, Chen G, Zhang Y (2009) Study of IrxRu1-xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis. Electrochim Acta 54:6250–6256

    Article  CAS  Google Scholar 

  31. Srinivasan R, Taulbee D, Davis HB (1991) The effect of sulfate on the crystal structure of zirconia. Catal Lett 9:1–8

    Article  CAS  Google Scholar 

  32. Xiong HM, Chen JS, Li DM (2003) Controlled growth of Sb2O5 nanoparticles and their use as polymer electrolyte fillers. J Mater Chem 13:1994–1998

    Article  CAS  Google Scholar 

  33. JCPDS-ICDD Database (2011) International Centre for Diffraction Data

  34. Hrovat M, Bencan A, Holc J, Kosec M (2001) Subsolidus phase equilibria in the RuO2-TiO2-ZrO2 system. J Mater Sci Lett 20:2005–2008

    Article  CAS  Google Scholar 

  35. Elmasides C, Kondarides DI, Grunert W, Verykios XE (1999) XPS and FTIR study of Ru/Al2O3 and Ru/TiO2 catalysts: reduction characteristics and interaction with a methane-oxygen mixture. J Phys Chem 103:5227–5239

    Article  CAS  Google Scholar 

  36. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-Ray photoelectron spectroscopy. Perkin-Elmer Corporation, Minnesota

  37. National Institute of Standards and Technology, NIST X-ray Photoelectron Spectroscopy Database. http://srdata.nist.gov/xps/ Accessed 11 December 2013

  38. Fu X, Yu H, Peng F, Wang H, Qian Y (2007) Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance. Appl Catal A Gen 321:190–197

    Article  CAS  Google Scholar 

  39. Lee J, Koo J, Sim HS, Jeon H (2004) Characteristic of ZrO2 films deposited by using the atomic layer deposition method. J Korean Phys Soc 44:915–919

    CAS  Google Scholar 

  40. Andrulevičius M, Tamulevičius S, Gnatyuk Y, Vityuk N, Smirnova N, Eremenko A (2008) XPS investigation of TiO2/ZrO2/SiO2 films modified with Ag/Au nanoparticles. Mater Sci 14:8–14

    Google Scholar 

  41. Kariuki S, Dewald HD (1996) Evaluation of diffusion coefficients of Metallic Ions in Aqueous solutions. Electroanal 8:307–313

    Article  CAS  Google Scholar 

  42. Dassas Y, Duby P (1995) Diffusion toward Fractal Interfaces. J Electrochem Soc 142:4175–4180

    Article  CAS  Google Scholar 

  43. Rodríguez FA, Mateo MN, Aceves JM, Rivero EP, González I (2013) Electrochemical oxidation of bio-refractory dye in a simulated textile industry effluent using DSA electrodes in a filter-press type FM01-LC reactor. Environ Technol 34:573–583

    Article  Google Scholar 

  44. Da Silva LM, De Faria LA, Boodts JFC (2002) Electrochemical impedance spectroscopic (EIS) investigation of the deactivation mechanism, surface and electrocatalytic properties of Ti/RuO2(x) + Co3O4(1-x) electrodes. J Electroanal Chem 532:141–150

    Article  Google Scholar 

  45. Xingzu W, Xiang C, Dezhi S, Hong Q (2008) Biodecolorization and partial mineralization of Reactive Black 5 by a strain of Rhodopseudomonas palustris. J Environ Sci 20:1218–1225

    Article  Google Scholar 

  46. Vautier M, Guillard C, Herrmann J-M (2001) Photocatalytic Degradation of Dyes in Water: Case Study of Indigo and of Indigo Carmine. J Catal 201:46–59

    Article  CAS  Google Scholar 

  47. Kritikos DE, Xekoukoulotakis NP, Psillakis E, Mantzavinos D (2007) Photocatalytic degradation of reactive black 5 in aqueous solutions: Effect of operating conditions and coupling with ultrasound irradiation. Water Res 41:2236–2246

    Article  CAS  Google Scholar 

  48. Roessler A, Crettenand D, Dossenbach O, Marte W, Rys P (2002) Direct electrochemical reduction of indigo. Electrochim Acta 47:1989–1995

    Article  CAS  Google Scholar 

Download references

Acknowledgments

F.A. Rodríguez (grant holder number 227108) is grateful to Consejo Nacional de Ciencia y Tecnología (CONACyT) for the PhD fellowship granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Rivero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, F.A., Rivero, E.P., Lartundo-Rojas, L. et al. Preparation and characterization of Sb2O5-doped Ti/RuO2-ZrO2 for dye decolorization by means of active chlorine. J Solid State Electrochem 18, 3153–3162 (2014). https://doi.org/10.1007/s10008-014-2554-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2554-4

Keywords

Navigation