Skip to main content
Log in

Structural and electrochemical characterization of polyaniline/LiCoO2 nanocomposites prepared via a Pickering emulsion

Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polyaniline (PANI)/LiCoO2 nanocomposite materials are successfully ready through a solid-stabilized emulsion (Pickering emulsion) route. The properties of nanocomposite materials have been put to the test because of their possible relevance to electrodes of lithium batteries. Such nanocomposite materials appear thanks to the polymerization of aniline in Pickering emulsion stabilized with LiCoO2 particles. PANI has been produced through oxidative polymerization of aniline and ammonium persulfate in HCl solution. The nanocomposite materials of PANI/LiCoO2 could be formed with low amounts of PANI. The morphology of PANI/LiCoO2 nanocomposite materials shows nanofibers and round-shape-like morphology. It was found that the morphology of the resulting nanocomposites depended on the amount of LiCoO2 used in the reaction system. Ammonium persulfate caused the loss of lithium from LiCoO2 when it was used at high concentration in the polymerization recipe. Highly resolved splitting of 006/102 and 108/110 peaks in the XRD pattern provide evidence to well-ordered layered structure of the PANI/LiCoO2 nanocomposite materials with high LiCoO2 content. The ratios of the intensities of 003 and 104 peaks were found to be higher than 1.2 indicating no pronounced mixing of the lithium and cobalt cations. The electrochemical reactivity of PANI/LiCoO2 nanocomposites as positive electrode in a lithium battery was examined during lithium ion deinsertion and insertion by galvanostatic charge–discharge testing; PANI/LiCoO2 nanocomposite materials exhibited better electrochemical performance by increasing the reaction reversibility and capacity compared to that of the pristine LiCoO2 cathode. The best advancement has been observed for the PANI/LiCoO2 nanocomposite 5 wt.% of aniline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Abe T, Koyama T (2011) Calphad 35:209–218

    Article  CAS  Google Scholar 

  2. Jinpeng Y, Han Z, Xiaohong H, Zhan H, Zhou Y, Liu X (2013) J Power Sources 225:34–39

    Article  Google Scholar 

  3. MacDiarmid AG (2001) Angew Chem Int Ed 40:2581–2590

    Article  CAS  Google Scholar 

  4. Dimitrakopoulos CD, Malenfant PRL (2002) Adv Mater 14:99–117

    Article  CAS  Google Scholar 

  5. Virji S, Kaner RB, Weiller BH (2005) Chem Mater 17:1256–1260

    Article  CAS  Google Scholar 

  6. Venkatachalam S, Prabhakaran PV (1998) Synth Metals 97:141–146

    Article  CAS  Google Scholar 

  7. Tahir ZM, Alocilja EC, Grooms DL (2007) Sensors 7:1123–1140

    Article  CAS  Google Scholar 

  8. Liang L, Liu J, Windisch CF, Exarhos GJ, Lin Y (2002) Angew Chem Int Ed 41:3665–3668

    Article  CAS  Google Scholar 

  9. Rudge A, Raistrick I, Gottesfeld S, Ferraris JP (1994) Electrochim Acta 39:273–287

    Article  CAS  Google Scholar 

  10. Talbi H, Just PE, Dao LH (2003) J Appl Electrochem 33:465–473

    Article  CAS  Google Scholar 

  11. Peng C, Zhang SW, Jewell D, Chen GZ (2008) Prog Nat Sci 18:777–788

    Article  CAS  Google Scholar 

  12. Huang LM, Wen TC, Gopalan A (2006) Electrochim Acta 51:3469–3476

    Article  CAS  Google Scholar 

  13. Lota K, Khomenko V, Frackowiak E (2004) J Phys Chem Solids 65:295–301

    Article  CAS  Google Scholar 

  14. Kanatzidis MG, Wu CG, Marcy HO, Kannewurf CR (1989) J Am Chem Soc 111:4139–4141

    Article  CAS  Google Scholar 

  15. Leroux F, Koene BE, Nazar LF (1996) J Electrochem Soc 143:L181–L183

    Article  CAS  Google Scholar 

  16. Leroux F, Goward G, Power WP, Nazar LF (1997) J Electrochem Soc 144:3886–3895

    Article  CAS  Google Scholar 

  17. Ruiz-Hitzky E (1993) Adv Mater 5:334–340

    Article  CAS  Google Scholar 

  18. Ruiz-Hitzky E, Aranda P, Quim AN (1997) Int Ed 93:197–212

    CAS  Google Scholar 

  19. Gomez-Romero P (2001) Adv Mater 13:163–174

    Article  CAS  Google Scholar 

  20. Ahn D, Koo YM, Kim MG, Shin N, Park J, Eom J, Cho J, Shin TJ (2010) J Phys Chem C 114:3675–3680

    Article  CAS  Google Scholar 

  21. Chen WM, Huang YH, Yuan LX (2011) J Electroanal Chem 660:108–113

    Article  CAS  Google Scholar 

  22. Neves S, Canobre SC, Oliveira RS, Polo Fonseca C (2009) J Power Sources 189:1167–1173

    Article  CAS  Google Scholar 

  23. Xiao Q, Tan X, Ji L, Xue J (2007) Synth Met 157:784–791

    Article  CAS  Google Scholar 

  24. Sullivan AP, Kilpatrick PK (2002) Ind Eng Chem Res 41:3389–3404

    Article  CAS  Google Scholar 

  25. Binks BP, Clint JH (2002) Langmuir 18:1270–1273

    Article  CAS  Google Scholar 

  26. He Y, Yu X (2007) Mater Lett 61:2071–2074

    Article  CAS  Google Scholar 

  27. He Y (2005) Appl Surf Sci 249:1–4

    Article  CAS  Google Scholar 

  28. He Y (2004) Powder Technol 147:59–63

    Article  CAS  Google Scholar 

  29. He Y (2005) Mater Chem Phys 92:134–137

    Article  CAS  Google Scholar 

  30. Zhan SH, Li Y, Yu HB (2008) J Dispersion Sci Technol 29:702–705

    Article  CAS  Google Scholar 

  31. Song GP, Bo J, Guo R (2005) Colloid Polym Sci 283:677–680

    Article  CAS  Google Scholar 

  32. Mosqueda Y, Pérez-Cappe E, Arana J, Longo E, Ries A, Cilense M, Nascente PAP, Aranda P, Ruiz-Hitzky E (2006) J Solid State Chem 179:308–314

    Article  CAS  Google Scholar 

  33. Qi Y, Zhang J, Qiu S, Sun L, Xu F, Liuzhang O, Sun D (2009) J Therm Anal Calorim 98:533–537

    Article  CAS  Google Scholar 

  34. Predoană L, Barău (Szatvanyi) A, Zaharescu M, Vasilchina H, Velinova N, Banov B, Momchilov A (2004) Proceedings of the International Workshop "Advanced Techniques for Energy Sources Investigation and Testing" 4–9 Sept Sofia, Bulgaria

  35. Song SW, Han KS, Fujita H, Yoshimura M (2001) Chem Phys Lett 344:299–304

    Article  CAS  Google Scholar 

  36. do Nascimento GM, Silva CHB, Temperini MLA (2006) Macromol Rapid Commun 27:255–259

    Article  Google Scholar 

  37. Tang CW, Wang CB, Chien SH (2008) Thermochim Acta 473:68–73

    Article  CAS  Google Scholar 

  38. Gabrisch H, Kombolias M, Mohanty D (2010) Solid State Ionics 181:71–78

    Article  CAS  Google Scholar 

  39. Reimers JN, Dahn JR (1992) J Electochem Soc 139:2091–2097

    Article  CAS  Google Scholar 

  40. Wu TM, Lin YW, Liao CS (2005) Carbon 43:734–740

    Article  CAS  Google Scholar 

  41. Ding Y, Zhang P, Jiang Y, Gao D (2007) Solid State Ionics 178:967–971

    Article  CAS  Google Scholar 

  42. Qi Y, Zhang J, Qiu S, Sun L, Xu F, Zhu M, Liuzhang O, Sun D (2009) J Therm Anal Calorim 98:533–537

    Article  CAS  Google Scholar 

  43. Sridevi V, Malathi S, Devi CS (2011) Chem Sci J 26:1–6

    Google Scholar 

  44. Zhu C-L, Chou S-W, He S-F, Liao W-N, Chen C-C (2007) Nanotechnology 18:275604–275609

    Article  Google Scholar 

  45. Shreepathi S, Holze R (2006) Langmuir 22:5196–5204

    Article  CAS  Google Scholar 

  46. Wei Y, Kim KB, Chen G, Park CW (2008) Mater Charact 59:1196–1200

    Article  CAS  Google Scholar 

  47. Hashiba M, Okamoto H, Nurishi Y, Hiramatsu K (1988) J Mater Sci 23:2893–2896

    Article  CAS  Google Scholar 

  48. Kim DH, Jeong ED, Kim SP, Shim YB (2000) Bull Korean Chem Soc 21:1125–1132

    CAS  Google Scholar 

  49. Teshima K, Lee S, Mizuno Y, Inagaki H, Hozumi M, Kohama K, Yubuta K, Shishido T, Oishi S (2010) J Am Chem Soc. doi:10.1021/cg100705d

  50. Perez-Cappe E, Mosqueda Y, Martınez R, Milian CR, Sanchez O, Varela JA, Hortencia A, Souza E, Arandad P, Ruiz-Hitzky E (2008) J Mater Chem 18:3965–3971

    Article  CAS  Google Scholar 

  51. Julien CM (2003) Solid State Ionics 157:57–71

    Article  CAS  Google Scholar 

  52. Lu CH, Lin SW (2001) J Power Sources 97–98:458–460

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karima Ferchichi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferchichi, K., Hbaieb, S., Amdouni, N. et al. Structural and electrochemical characterization of polyaniline/LiCoO2 nanocomposites prepared via a Pickering emulsion. J Solid State Electrochem 17, 1435–1447 (2013). https://doi.org/10.1007/s10008-013-2014-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2014-6

Keywords

Navigation