Skip to main content

Advertisement

Log in

Electrical and Electrochemical Behavior of Binary Li4Ti5O12–Polyaniline Composite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polyaniline (PANI), and nanocrystallites of pure Li4Ti5O12 (LTO) and V-doped Li4Ti5O12 (V-LTO) spinel structure have been synthesized. The pure and doped Li4Ti5O12 was synthesized by solid-state reaction, whereas the samples containing PANI were prepared by the in-situ oxidation polymerization method. As-prepared materials were characterized by XRD, FT-IR and SEM techniques. The electrical and electrochemical properties were studied using impedance spectroscopy (EIS), cyclic voltammetry (CV), galvanostatic charge–discharge methods (GCD) techniques. The doping of LTO with vanadium caused marked changes in each of particle size, electrical conductivity, and electrical capacitance without any transforming in the spinel crystal structure of the LTO material. Electrochemical studies showed that the specific capacitance of a hybrid electrode built of the binary materials LTO and PANI is higher than that of its individual single material. It shows a specific capacitance of 108 F/g, an energy density of 30 Wh/kg, and a power density of 2160 W/kg at 4 A/g as well as high cycling performance, with 88.3% capacitance retained over 1000 cycles. The high electrochemical performance of the V-LTO/PANI composite electrode can be attributed to the synergistic effects of the singular constituents and the enhancement of electronic conduction in the hybrid electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Chao et al., Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 15, 565–573 (2014)

    PubMed  Google Scholar 

  2. M. Chen et al., Rapid pseudocapacitive sodium-ion response induced by 2D ultrathin tin monoxide nanoarrays. Adv. Funct. Mater. 27, 160–172 (2017)

    Google Scholar 

  3. Z. Liu et al., Nano energy towards wearable electronic devices:a quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability. Nano Energy 44, 164–173 (2018)

    CAS  Google Scholar 

  4. J. Duay, M. Kelly, T.N. Lambert, Evaluation of a ceramic separator for use in rechargeable alkaline Zn/MnO2 batteries. J. Power Sources 395, 430–438 (2018)

    CAS  Google Scholar 

  5. D. Zhao, Y. Wang, Y. Zhang, High-performance Li-ion batteries and super- capacitors based on 1-D. Nano-Micro Lett. 3, 62–71 (2011)

    CAS  Google Scholar 

  6. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    CAS  PubMed  Google Scholar 

  7. J. Zhou et al., A conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small 14, 1803–1816 (2018)

    Google Scholar 

  8. A. Elmouwahidi, E. Bailón-garcía, A.F. Pérez-cadenas, N. Fernández-sáez, F. Carrasco-marín, Development of vanadium-coated carbon microspheres: electrochemical behavior as electrodes for supercapacitors. Adv. Funct. Mater. 28, 1802–1817 (2018)

    Google Scholar 

  9. X. Liu, D. Li, X. Chen, W. Lai, W. Huang, Highly transparent and flexible all-solid-state supercapacitors based on ultra-long silver nanowire conductive networks. Appl. Mater. Interfaces 10, 32536–32542 (2018)

    CAS  Google Scholar 

  10. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    CAS  Google Scholar 

  11. Y.S. Lee, Y.K. Sun, K.S. Nahm, Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries. Solid State Ionics 109, 285–294 (1998)

    CAS  Google Scholar 

  12. B.J. Hwang, C.Y. Wang, M.Y. Cheng, R. Santhanam, Structure, morphology, and electrochemical investigation of LiMn2O4 thin film cathodes deposited by radio frequency sputtering for lithium microbatteries. J. Phys. Chem. C 113, 11373–11380 (2009)

    CAS  Google Scholar 

  13. F. Li, M. Zeng, J. Li, H. Xu, Preparation and electrochemical performance of Mg-doped Li4Ti5O12 nanoparticles as anode materials for lithium-ion batteries. Int. J. Electrochem. Sci. 10, 10445–10453 (2015)

    CAS  Google Scholar 

  14. B. Lee, J.R. Yoon, Preparation and characteristics of Li4Ti5O12 with various dopants as anode electrode for hybrid supercapacitor. Curr. Appl. Phys. 13, 1350–1353 (2013)

    Google Scholar 

  15. T. Yi et al., Spinel Li4Ti5-xZrxO12 ( 0 ≤ x ≤ 0.25) materials as high-performance anode materials for lithium-ion batteries. J. Alloys Compd. 558, 11–17 (2013)

    CAS  Google Scholar 

  16. H. Jung, N. Venugopal, B. Scrosati, Y. Sun, A high energy and power density hybrid supercapacitor based on an advanced. J. Power Sources 221, 266–271 (2013)

    CAS  Google Scholar 

  17. H. Yu et al., High-rate characteristics of novel anode Li4Ti5O12/polyacene materials for Li-ion secondary batteries. Electrochim. Acta 53, 4200–4204 (2008)

    CAS  Google Scholar 

  18. K. Mukai, K. Ariyoshi, T. Ohzuku, Comparative study of Li[CrTi]O4, Li[Li1/3Ti5/3]O4 and Li1/2Fe1/2[Li1/2Fe1/2Ti]O4 in non-aqueous lithium cells. J. Power Sources 146, 213–216 (2005)

    CAS  Google Scholar 

  19. R. Bernhard, S. Meini, H.A. Gasteiger, On-line electrochemical mass spectrometry investigations on the gassing behavior of Li4Ti5O12 electrodes and its origins. J. Electrochem. Soc. 161, A497–A505 (2014)

    CAS  Google Scholar 

  20. H. Song et al., An upper limit of Cr-doping level to retain zero-strain characteristics of Li4Ti5O12 anode material for li-ion batteries. Sci. Rep. 7, 43335 (2017)

    PubMed  PubMed Central  Google Scholar 

  21. E. Zhang, H. Zhang, Preparation and electrochemical properties of carbon-coated Li4Ti5O12 anode materials for lithium ion batteries. Int. J. Electrochem. Sci. 13, 12380–12390 (2018)

    CAS  Google Scholar 

  22. X. Li, M. Qu, Z. Yu, Structural and electrochemical performances of Li4Ti5-xZrxO12 as anode material for lithium-ion batteries. J. Alloys Compd. 487, 12–17 (2009)

    Google Scholar 

  23. B.G. Lee, J.R. Yoon, Preparation and characteristics of Li4Ti5O12 anode material for hybrid supercapacitor. J. Electron. Eng. Technol. 7, 207–211 (2012)

    Google Scholar 

  24. E. Kang et al., Highly improved rate capability for a lithium-ion battery nano- Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method. Adv. Funct. Mater. 21, 4349–4357 (2011)

    CAS  Google Scholar 

  25. L. Yang, L. Gao, Li4Ti5O12/C composite electrode material synthesized involving conductive carbon precursor for Li-ion battery. J. Alloys Compd. 485, 93–97 (2009)

    CAS  Google Scholar 

  26. H. Narayan, H. Alemu, E. Iwuoha, Synthesis, characterization and conductivity measurements of polyaniline and poly aniline/fly-ash composites. Phys. Status Solidi Appl. Mater. Sci. 203, 3665–3672 (2006)

    CAS  Google Scholar 

  27. S.K. Meher, P. Justin, G.R. Rao, Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl. Mater. Interfaces 3, 2063–2073 (2011)

    CAS  PubMed  Google Scholar 

  28. M. Chen, W. Li, X. Shen, G. Diao, Fabrication of core–shell α-Fe2O3 @ Li4Ti5O12 composite and its application in the lithium ion batteries. ACS Appl. Mater. Interfaces 6, 4514–4523 (2014)

    CAS  PubMed  Google Scholar 

  29. C. Gomez-Navarro et al., Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007)

    CAS  PubMed  Google Scholar 

  30. R. Dominko, M. Gaberscek, M. Bele, D. Mihailovic, J. Jamnik, Carbon nanocoatings on active materials for Li-ion batteries. J. Eur. Ceram. Soc. 27, 909–913 (2007)

    CAS  Google Scholar 

  31. Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4, 1963–1970 (2010)

    CAS  PubMed  Google Scholar 

  32. A.S. Adekunle, K.I. Ozoemena, Electron transfer behaviour of single-walled carbon nanotubes electro-decorated with nickel and nickel oxide layers. Electrochim. Acta 53, 5774–5782 (2008)

    CAS  Google Scholar 

  33. A.S. Adekunle, K.I. Ozoemena, Insights into the electro-oxidation of hydrazine at single-walled carbon-nanotube-modified edge-plane pyrolytic graphite electrodes electro-decorated with metal and metal oxide films. J. Solid State Electrochem. 12, 1325–1336 (2008)

    CAS  Google Scholar 

  34. R. Younesi, G.M. Veith, P. Johansson, K. Edström, T. Vegge, Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S. Energy Environ. Sci. 8, 1905–1922 (2015)

    CAS  Google Scholar 

  35. M. Khairy, K. Faisal, M.A. Mousa, High-performance hybrid supercapacitor based on pure and doped Li4Ti5O12 and graphene. J. Solid State Electrochem. 21, 873–882 (2017)

    CAS  Google Scholar 

  36. Z. Durmus, A. Baykal, H. Kavas, H. Szeri, Preparation and characterization of polyaniline (PANI)/Mn3O4 nanocomposite. Phys B 406, 1114–1120 (2011)

    CAS  Google Scholar 

  37. A. Laumann, Novel routes to Li4Ti5O12 spinel: characterization and phase relations. Thesis, Facultät für Geowissenshaften der Ludwig Maximilians, München University, Germany 1, 1–164 (2010)

  38. H. Ge, N. Li, D. Li, C. Dai, D. Wang, Study on the theoretical capacity of spinel lithium titanate induced by low-potential intercalation. J. Phys. Chem. C 113, 6324–6326 (2009)

    CAS  Google Scholar 

  39. A. Gabal et al., Synthesis, characterization and electrical conductivity of polyaniline-Mn0.8Zn0.2Fe2O4 nano-composites. Int. J. Electrochem. Sci. 11, 4526–4538 (2016)

    CAS  Google Scholar 

  40. N. Ahmed, M. Ramadan, W.M.A. El, Non-precious co-catalysts boost the performance of TiO2 hierarchical hollow mesoporous spheres in solar fuel cells. Int. J. Hydrog. Energy 43, 21219–21230 (2018)

    CAS  Google Scholar 

  41. Z.G. Bellal et al., Synthesis and electrical conducting properties of poly(aniline) doped with zeolite HY nanocomposites containing SnO2 for high- performance supercapacitor electrode. J. Inorg. Organomet. Polym. Mater. 29, 1548–1558 (2019)

    Google Scholar 

  42. V.J. Babu, S. Vempati, S. Ramakrishna, Conducting polyaniline-electrical charge transportation. Mater. Sci. Appl. 4, 1–10 (2013)

    CAS  Google Scholar 

  43. S. Ganapathy, M. Wagemaker, Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. ACS Nano 6, 8702–8712 (2012)

    CAS  PubMed  Google Scholar 

  44. S.M. Ebrahim, Fabrication of Schottky diode based on Zn electrode and polyaniline doped with 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt. J. Polym. Res. 16, 481–487 (2009)

    CAS  Google Scholar 

  45. A.S. Roy, S.G. Hegde, A. Parveen, Synthesis, characterization, AC conductivity, and diode properties of polyaniline-CaTiO3 composites. Polym. Adv. Technol. 25, 130–135 (2014)

    CAS  Google Scholar 

  46. M. Khairy, M.A. Mousa, nanoparticles. Int. J. Mater. Chem. 2, 197–204 (2013)

    Google Scholar 

  47. M. Wilkening, R. Amade, W. Iwaniak, P. Heitjans, Ultraslow Li diffusion in spinel-type structured Li4Ti5O12—A comparison of results from solid state NMR and impedance spectroscopy. Phys. Chem. Chem. Phys. 9, 1239–1246 (2007)

    CAS  PubMed  Google Scholar 

  48. Z. Li, J. Li, Y. Zhao, K. Yang, F. Gao, X. Li, Structure and electrochemical properties of Sm-doped Li4Ti5O12 as anode material for lithium-ion batteries. RSC Adv. 6, 15492–15500 (2016)

    CAS  Google Scholar 

  49. Y.P. Al et al., Synthesis of Li4Ti5O12 -Sn by ultrasonic method as anode materials for lithium ion battery. IOP Conf. Ser. Mater. Sci. Eng. 432, 432 (2018)

    Google Scholar 

  50. Ü.A. Bilgin et al., Optical and dielectric properties of PMMA/α-Fe2O3–ZnO nanocomposite films. J. Inorg. Organomet. Polym. Mater. 29, 1514–1522 (2019)

    Google Scholar 

  51. Z.Y. Yang et al., Controllable growth of CNTs on graphene as high-performance electrode material for supercapacitors. ACS Appl. Mater. Interfaces 6, 8497–8504 (2014)

    CAS  PubMed  Google Scholar 

  52. S. Hong, X. Huang, H. Liu, Z. Gao, In situ chemical synthesis of MnO2/HMCNT nanocomposite with a uniquely developed three-dimensional open porous architecture for supercapacitors. J. Inorg. Organomet. Polym. Mater. 29, 1587–15960 (2019)

    CAS  Google Scholar 

  53. L. Wang et al., Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. Sci. Rep. 3, 1–9 (2013)

    Google Scholar 

  54. Z. Neisi, Z. Ansari-Asl, A.S. Dezfuli, Polyaniline/Cu(II) metal-organic frameworks composite for high performance supercapacitor electrode. J. Inorg. Organomet. Polym. Mater. 29, 1838–1847 (2019)

    CAS  Google Scholar 

  55. M. Ciszewski, A. Mianowski, P. Szatkowski, G. Nawrat, J. Adamek, Reduced graphene oxide–bismuth oxide composite as electrode material for supercapacitors. Ionics (Kiel). 21, 557–563 (2014)

    Google Scholar 

  56. M.A. Mousa, M. Khairy, M. Shehab, Nanostructured ferrite/graphene/ polyaniline using for supercapacitor to enhance the capacitive behavior. J. Solid State Electrochem. 21, 995–1005 (2017)

    CAS  Google Scholar 

  57. E. Pohjalainen, T. Rauhala, M. Valkeapa, J. Kallioinen, T. Kallio, Effect of Li4Ti5O12 particle size on the performance of lithium ion battery electrodes at high C—rates and low temperatures. J. phy. Chem. C 119, 2277–2283 (2015)

    CAS  Google Scholar 

  58. S. Kim et al., Reduced graphene oxide/ZnO nanorods nanocomposite: structural, electrical and electrochemical properties. J. Inorg. Organomet. Polym. Mater. 29, 2282–2290 (2019)

    Google Scholar 

  59. H. Xia, W. Xiao, M.O. Lai, L. Lu, Facile synthesis of novel nanostructured MnO2 thin films and their application in supercapacitors. Nanoscale Res. Lett. 4, 1035–1040 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  60. M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanostructured carbon—metal oxide composite electrodes for supercapacitors : a review. Nanoscale 5, 72–88 (2013)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Faisal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairy, M., Bayoumy, W.A., Faisal, K. et al. Electrical and Electrochemical Behavior of Binary Li4Ti5O12–Polyaniline Composite. J Inorg Organomet Polym 30, 3158–3169 (2020). https://doi.org/10.1007/s10904-020-01478-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01478-w

Keywords

Navigation