Skip to main content
Log in

Cobalt electrodeposition on polycrystalline palladium. Influence of temperature on kinetic parameters

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cobalt electrodeposition on polycrystalline palladium was studied at different temperatures using potentiostatic and voltammetric techniques. Temperature effect on kinetics parameters, diffusion coefficient, and charge transfer coefficient was analyzed. The values of nucleation rate and rate constant of the proton reduction reaction (k PR) increased with the temperature increment and the applied overpotential. The number of active nucleation sites was slightly affected with temperature increase. At higher temperatures, the larger k PR values suggested the proton reduction process is favored. The temperature effect on the values of the transfer coefficient was analyzed and a decrease in its value with the temperature increase was observed. From a Conway plot, it was observed that entropy change is the main factor that controls the kinetics of the reaction in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bakonyi I, Peter L (2010) Prog Mater Sci 55:107–245

    Article  CAS  Google Scholar 

  2. Oha SJ, Kima W, Kima W, Choia BH, Kima JY, Koha H, Kima HJ, Park JH (2001) Appl Surf Sci 169:127–133

    Article  Google Scholar 

  3. Wu Y, Stohr J, Hermsmeier B, Samant MG, Weller D (1992) Phys Rev Lett 69:2307–2310

    Article  CAS  Google Scholar 

  4. Metoki N, Donner W, Zabel H (1994) Phys Rev B 49:17351–17359

    Article  Google Scholar 

  5. Bell BW, Campbell DK (1997) Handbook of magneto-optical data recording: materials, subsystems, techniques. In: McDaniel TW, Victora RH (eds). Noyes Publications: New Jersey

  6. Baricuatro JHL (2006) Electrodeposition of ultrathin Pd, Co and Bi films on well-defined noble-metal electrodes: studies by ultrahigh vacuum-electrochemistry (Uhv-Ec). In: Texas A&M University (ed). ProQuest Information and Learning Company, Texas

  7. Wu Y, Stohr J, Hermsmeimer BD, Samant MG, Weller D (1992) Phys Rev Lett 69:2307–2310

    Article  CAS  Google Scholar 

  8. Atrei A, Rovida G, Torrini M, Bardi U, Gleeson M, Barnes CJ (1997) Surf Sci 372:91–105

    Article  CAS  Google Scholar 

  9. Bardi U (1991) Appl Surf Sci 51:89–93

    Article  CAS  Google Scholar 

  10. Haan P, Meng Q, Katayama T, Lodder JC (1992) J Magn Magn Mater 113:29–35

    Article  Google Scholar 

  11. Broeder FJA, Donkersloot HC, Draaisma HJG, Jonge WJM (1987) J Appl Phys 61:4317–4319

    Article  Google Scholar 

  12. Boukari S, Beaurepaire E, Scheurer F, Carriere B, Deville JP (1998) Thin Solid Films 318:177–179

    Article  CAS  Google Scholar 

  13. Takata FM, Sumodjo PTA (2007) Electrochim Acta 52:6089–6096

    Article  CAS  Google Scholar 

  14. Georgescu V, Mazur V, Cheloglu O (1996) J Magn Magn Mater 156:27–28

    Article  CAS  Google Scholar 

  15. Jyoko Y, Kashiwabara S, Hayashi Y (1996) J Magn Magn Mater 156:35–37

    Article  CAS  Google Scholar 

  16. Georgescu V, Mazur V, Pushcashu B (2000) Mater Sci Eng B 68:131–137

    Article  Google Scholar 

  17. Mendoza-Huizar LH, Robles J, Palomar-Pardavé M (2002) J Electroanal Chem 521:95–106

    Article  CAS  Google Scholar 

  18. Mendoza-Huizar LH, Robles J, Palomar-Pardavé M (2003) J Electroanal Chem 545:39–45

    Article  CAS  Google Scholar 

  19. Mendoza-Huizar LH, Rios-Reyes CH (2011) J Solid State Electrochem 15:737–745

    Article  CAS  Google Scholar 

  20. Ives DJG, Janz GJ (1961) Reference electrodes theory and practice. Academic, New York

    Google Scholar 

  21. Palomar-Pardave ME, Gonzalez I, Soto AB, Arce EM (1998) J Electroanal Chem 443:125–136

    Article  CAS  Google Scholar 

  22. Bertazzoli R, Sousa MFB (1997) J Braz Chem Soc 8:357–362

    Article  CAS  Google Scholar 

  23. Bartlett PN, Gollas B, Guerin S, Marwan J (2002) Phys Chem Chem Phys 4:3835–3842

    Article  CAS  Google Scholar 

  24. Berzins T, Delahay P (1953) J Am Chem Soc 75:555–559

    Article  CAS  Google Scholar 

  25. Matsumiya M, Terazono M, Tokuraku K (2006) Electrochim Acta 51:1178–1183

    Article  CAS  Google Scholar 

  26. Holzle MH, Retter U, Kolb DM (1994) J Electroanal Chem 371:101–109

    Article  Google Scholar 

  27. Scharifker BR, Hills G (1983) Electrochim Acta 28:879–889

    Article  CAS  Google Scholar 

  28. Scharifker BR, Mostany J (1984) J Electroanal Chem 177:13–23

    Article  CAS  Google Scholar 

  29. Rios-Reyes CH, Granados-Neri M, Mendoza-Huizar LH (2009) Quim Nova 32:2382–2386

    Article  CAS  Google Scholar 

  30. Palomar-Pardavé ME, Scharifker BR, Arce EM, Romero-Romo M (2005) Electrochim Acta 50:4736–4745

    Article  Google Scholar 

  31. Varela FE, Grassa LM, Vilche JR (1992) Electrochim Acta 37:1119–1127

    Article  CAS  Google Scholar 

  32. Barradas RG, Bosco E (1985) J Electroanal Chem 193:23–26

    Article  CAS  Google Scholar 

  33. Noel M, Vasu K (1990) Cyclic voltammetry and the frontiers of electrochemistry. Aspect, London

    Google Scholar 

  34. Ramírez C, Arce EM, Romero-Romo M, Palomar-Pardave ME (2004) Solid State Ionics 169:81–85

    Article  Google Scholar 

  35. Vazquez-Arenas J, Cruz R, Mendoza-Huizar LH (2006) Electrochim Acta 52:892–903

    Article  CAS  Google Scholar 

  36. Mostany J, Scharifker BR, Saavedra K, Borrás C (2008) Russ J Electrochem 44(6):652–658

    Article  CAS  Google Scholar 

  37. Milchev A (1991) J Contemp Phys 32:321–332

    Article  CAS  Google Scholar 

  38. Conway BE, MacKinnon DJ, Tilak BV (1970) Trans Faraday Soc 66:1203–1226

    Article  CAS  Google Scholar 

  39. Conway BE, Wilkinson DF (1986) J Electroanal Chem Interfacial 214:633–653

    Article  CAS  Google Scholar 

  40. Conway BE (1985) The temperature and potential dependence of electrochemical reaction rates, and the real form of the Tafel equation. In: Conway BE, White RE, Bockris JOM (eds) Modern aspects of electrochemistry no. 16. Plenum, New York

    Google Scholar 

  41. Conway BE, Tessier DF, Wilkinson DP (1986) J Electroanal Chem Interfacial Electrochem 199:249–269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CHRR is grateful for a postdoctoral fellowship from CONACYT. LHMH and CHRR thank financial supports from the Universidad Autónoma del Estado de Hidalgo. We acknowledge Professor M. Rivera for fruitful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Mendoza-Huizar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza-Huizar, L.H., Rios-Reyes, C.H. Cobalt electrodeposition on polycrystalline palladium. Influence of temperature on kinetic parameters. J Solid State Electrochem 16, 2899–2906 (2012). https://doi.org/10.1007/s10008-012-1722-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1722-7

Keywords

Navigation