Skip to main content
Log in

Rotaxane and pseudo-rotaxane molecules from molecular wires. Theoretical description

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Some rotaxane molecules were designed, and their electronic capabilities were studied by means of DFT calculations. The original molecular wire consists of an iron complex that comprises aromatic substituents that constitute linear chains, and this system is complemented by the addition of fullerene C60 unities at both extremes of the chain, which act as the stoppers of the chain. Another modification was to add a link that gives way to the mechanical bond; this link is a square molecule of bis-pyrydyl-pyridinium tetraion. An interesting effect was observed as a result of these modifications; the conductivity of the systems rises with the first substitution and even more with the second in such a way that the original semiconductor material changes to give a conductor one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725

    Article  CAS  Google Scholar 

  2. Marcus RA (1964) Chemical and electrochemical electron transfer theory. Annu Rev Phys Chem 15:155–196

    Article  CAS  Google Scholar 

  3. Closs GL, Miller JR (1988) Intra-molecular long distance electron transfer in organic molecules. Science 240:440–447

    Article  CAS  Google Scholar 

  4. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283

    Article  CAS  Google Scholar 

  5. Arrhenius TS, Blanchard-Desce M, Dvolaitzky M, Lehn JM (1986) Molecular devices: caroviologens as an approach to molecular wires-synthesis and incorporation into vesicle membranes. Proc Natl Acad Sci U S A 83:5355–5359

    Article  CAS  Google Scholar 

  6. Grozema FC, Siebbeles LDA (2011) Introduction: molecular electronics and molecular wires. Charge and exciton transport through molecular wires. Wiley-VCH, Weinheim

    Google Scholar 

  7. Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid molecular and mono-molecular devices. Nature 408:541–548

    Article  CAS  Google Scholar 

  8. Carrol LR, Gorman CB (2002) The genesis of molecular electronics. Angew Chem Int Ed 41:4378–4400

    Article  Google Scholar 

  9. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  10. Wang S, Shan Z, Huang H (2017) The mechanical properties of nano-wires. Adv Sci 4:1600332

    Article  Google Scholar 

  11. Appel D (2002) Wired for success. Nature 419:553–555

    Article  Google Scholar 

  12. Tanaka Y, Kiguchi M, Munetaka A (2017) Inorganic and organometallic molecular wires for single molecule devices. Chem Eur J 23:4741–4749

    Article  CAS  Google Scholar 

  13. Van Dongen SFM, Cantekin S, Elemans JAAW, Rowan AE, Nolte RJM (2014) Functional interlocked systems. Chem Soc Rev 43:99–112

    Article  Google Scholar 

  14. Gil-Ramírez G, Leigh DA, Stephens AJ (2015) Catenanes, fifty years of molecular links. Angew Chem Int Ed Eng 54:6110–6150

    Article  Google Scholar 

  15. McConnell AJ, Wood CS, Neelakandan P, Nitschke JR (2015) Stimuli-responsive metal-ligand assemblies. Chem Rev 115:7729–7793

    Article  CAS  Google Scholar 

  16. Kottas GS, Clarke LI, Horinek D, Michl J (2005) Artificial molecular rotors. Chem Rev 105:1281–1376

    Article  CAS  Google Scholar 

  17. Salcedo R, Monroy O, Ruiz-Espinoza A, Fomina L (2017) Simulation of [2]rotaxane and [2]catenane compounds containing fullerene fragments. Influence of the fullerene moiety. Comp Theo Chem 1102:22–29

    Article  CAS  Google Scholar 

  18. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  19. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R (2016) Gaussian 16, revision A.03. Gaussian, Inc., Wallingford

  21. Kaliginedi V, Rudnev AV, Moreno-García P, Baghernejad M, Huang C, Hong W, Wandlowski T (2014) Promising anchoring groups for single-molecule conductance measurements. Phys Chem Chem Phys 16:23529–23539

    Article  CAS  Google Scholar 

  22. Lissel F, Schwarz F, Blacque O, Riel H, Lörtscer E, Venkatesan K, Berke H (2014) Organometallic single-molecule electronics: tuning electron transport through X(diphosphine)2FeC4Fe(diphosphine)2X building blocks by varying the Fe−X−Au anchoring scheme from coordinative to covalent. J Am Chem Soc 136:14560–14569

    Article  CAS  Google Scholar 

  23. Martin CA, Ding D, Sorensen JK, Bjornholm T, Ruitenbeek, van der Zant HS (2008) Fullerene-based anchoring groups for molecular electronics. J Am Chem Soc 130:13198–13199

    Article  CAS  Google Scholar 

  24. Kaur RP, Engles D (2018) Transport in a fullerene terminated aromatic molecular device. J Sci: Adv Mat Dev 3:206–212

    Google Scholar 

  25. Fu H, Shao X, Chipot C, Cai W (2017) The lubricating role of water in shuttling of rotaxanes. Chem Sci 8:5087–5094

Download references

Acknowledgments

Authors would like to acknowledge Oralia L Jiménez A., María Teresa Vázquez, Alejandro Pompa, Alberto López-Vivas and Caín González for their technical support. The financial support of projects DGAPA PAPIIT IN203816 and RN203816 is also recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Salcedo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salcedo, R., Rios, C., Fomina, L. et al. Rotaxane and pseudo-rotaxane molecules from molecular wires. Theoretical description. J Mol Model 25, 203 (2019). https://doi.org/10.1007/s00894-019-4102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4102-8

Keywords

Navigation