Skip to main content
Log in

Stochastic and empirical models of the absolute asymmetric synthesis by the Soai-autocatalysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Absolute asymmetric synthesis (AAS) is the preparation of pure (or excess of one) enantiomer of a chiral compound from achiral precursor(s) by a chemical reaction, without enantiopure chiral additive and/or without applied asymmetric physical field. Only one well-characterized example of AAS is known today: the Soai-autocatalysis. In an attempt at clarification of the mechanism of this particular reaction we have undertaken empirical and stochastic analysis of several parallel AAS experiments. Our results show that the initial steps of the reaction might be controlled by simple normal distribution (“coin tossing”) formalism. Advanced stages of the reaction, however, appear to be of a more complicated nature. Symmetric beta distribution formalism could not be brought into correspondence with the experimental observations. A bimodal beta distribution algorithm provided suitable agreement with the experimental data. The parameters of this bimodal beta function were determined by a Pólya-urn experiment (simulated by computer). Interestingly, parameters of the resulting bimodal beta function give a golden section ratio. These results show, that in this highly interesting autocatalysis two or even perhaps three catalytic cycles are cooperating. An attempt at constructing a “designed” Soai-type reaction system has also been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pasteur L (1848) Mémorie sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire. CR hebdom Séances Acad Sci 26:535–538

    Google Scholar 

  2. Pasteur L (1848) Recherches sur les relations qui peuvent exister entre la forme crystalline, la composition chimique et le sens de la polarisation rotatoire. Ann Chim Phys 24:442–459

    Google Scholar 

  3. Pasteur L (1861) Recherches sur la dissymmetrie des produits organiques naturels. In: Leçons de chimie professées en 1860 par MM Pasteur, Cahours, Wurz, Berthelot, Sainte-Claire Deville, Barral et Dumas. Tome 1, Libraire de L. Hachette, Paris, pp 7 – 48.

  4. Caglioti L, Zucchi C, Florini N, Pályi G (2008) Open Questions about Chirality. In: Pályi G, Zucchi C, Caglioti L (eds) Organometallic chirality. Mucchi – Accad Nazl Sci Lett Arti, Modena, pp 9–27

    Google Scholar 

  5. Flack HD (2009) Louis Pasteur’s discovery of molecular chirality and spontaneous resolution in 1848, together with a complete review of his crystallographic and chemical work. Acta Crystallogr A 65:371–389

    CAS  Google Scholar 

  6. Yockey HP (2005) Information theory. Evolution and the origin of life. Cambridge University Press, Cambridge (UK), pp 20–113

    Google Scholar 

  7. Pályi G, Zucchi C, Bencze L, Caglioti L (2004) Biological chirality: a tool of information in vivo and in vitro. In: Seckbach J, Rubin E (eds) New avenues in bioinformatics. Springer, Berlin, pp 81–96

    Google Scholar 

  8. Markó L (2000) Organic chemistry, vol 1. Veszprémi Egyetemi Kiadó, Veszprém, p 48

    Google Scholar 

  9. Pearson K (1898) Chance or Vitalism. Nature 58:495–496

    Google Scholar 

  10. Mills W H (1932) Some aspects of stereochemistry. Chem Ind (London) 750–759.

  11. Frank FC (1953) On spontaneous asymmetric synthesis. Biochim Biophys Acta 11:459–463

    CAS  Google Scholar 

  12. Siegel J (1998) Homochiral imperative of life. Chirality 10:24–27

    CAS  Google Scholar 

  13. Mason SF (1985) Chemical evolution: origin of biomolecular chirality. Nature 314:400–401

    Google Scholar 

  14. Bonner WA (1988) Origins of chiral homogenity in nature. Top Stereochem 18:1–96

    CAS  Google Scholar 

  15. Keszthelyi L (1995) Origin of the homochirality of biomolecules. Q Rev Biophys 28:473–507

    CAS  Google Scholar 

  16. Pályi G, Micskei L, Bencze L, Zucchi C (2003) Biological chirality. Magyar Kém Lapja 58:218–223

    Google Scholar 

  17. Fujii N, Saito T (2004) Homochirality and life. Chem Record 4:267–278

    CAS  Google Scholar 

  18. Pályi G, Zucchi C, Caglioti L (eds) (2004) Progress in biological chirality. Elsevier, Oxford (UK)

    Google Scholar 

  19. Crick FHC (1968) The origin of the genetic code. J Mol Biol 22:361–363

    Google Scholar 

  20. Yockey H (2002) Information Theory, Evolution and the Origin of Life. In: Pályi G, Zucchi C, Caglioti L (eds) Fundamentals of life. Elsevier, Paris, pp 335–348

    Google Scholar 

  21. Mislow K (2003) Absolute asymmetric synthesis: a commentary. Collect Czechoslov Chem Commun 68:849–864

    CAS  Google Scholar 

  22. Pályi G, Micskei K, Zékány L, Zucchi C, Caglioti L (2005) Racemates and the Soai reaction. Magyar Kém Lapja 60:17–24

    Google Scholar 

  23. Crustas J, Hochberg D, Moyano A, Ribó JM (2009) Emergence of chirality in closed systems. ChemPhysChem 10:2123–2131

    Google Scholar 

  24. Sheldon RA (1993) Chirotechnology. Dekker, New York

    Google Scholar 

  25. Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378:767–768

    CAS  Google Scholar 

  26. Soai K, Shibata T, Sato I (2000) Enantioselective automultiplication of chiral molecules by asymmetric autocatalysis. Acc Chem Res 33:382–390

    CAS  Google Scholar 

  27. Soai K, Shibata T, Sato I (2004) Discovery and development of asymmetric autocatalysis. Bull Chem Soc Jpn 77:1063–1073

    CAS  Google Scholar 

  28. Soai K, Kawasaki T (2008) Asymmetric autocatalysis with amplification of chirality. Top Curr Chem 284:1–33

    CAS  Google Scholar 

  29. Soai K, Kawasaki T (2009) Asymmetric autocatalysis. Automultiplication of chiral molecules. Chem Today 27(6,Suppl): 3–7.

  30. Kawasaki T, Matsumoto A, Soai K (2012) Asymmetric autocatalysis. Pathway to the biological homochirality. Chem Today 30(5):10–13

    CAS  Google Scholar 

  31. Soai K, Kawasaki T (2013) Asymmertic autocatalysis of pyrimidyl alkanol. Top Organomet Chem 44:261–280

    CAS  Google Scholar 

  32. Soai K, Kawasaki T, Matsumoto A (2014) The origins of homochirality examined using asymmetric catalysis. Chem Record 14:70–83

    CAS  Google Scholar 

  33. Pályi G, Zucchi C, Caglioti L (eds) (2012) The Soai reaction and related topic. Artestampa – Accad Nazl Sci Lett Arti, Modena

    Google Scholar 

  34. Soai K, Shibata T, Kowata Y (1997) Production of optically active pyrimidyl alcohol by spontaneous asymmetric synthesis. Jpn Kokai Tokkyo Koho 9,268,179 [Application date: February 1, 1996; April 18, 1996].

  35. Soai K, Sato I, Shibata T, Komiya S, Hayashi M, Matsueda Y, Imamura H, Hayase T, Morioka H, Tabira H, Yamamoto J, Kowata Y (2003) Asymmetric synthesis of pyrimidyl alkanol without adding chiral substances by the addition of diisopropylzinc to pyrimidine-5-carbaldehyde in conjunction with asymmetric autocatalysis. Tetrahedron Asymmetry 14:185–188

    CAS  Google Scholar 

  36. Kawasaki T, Suzuki K, Shimizu M, Ishikawa K, Soai K (2006) Spontaneous absolute asymmetric synthesis in the presence of achiral silica gel in conjunction with asymmetric autocatalysis. Chirality 18:479–482

    CAS  Google Scholar 

  37. Caglioti L, Hajdu C, Holczknecht O, Zékány L, Zucchi C, Micskei K, Pályi G (2006) The concept of racemates and the Soai reaction. Viva Origino 34:62–80

    CAS  Google Scholar 

  38. Caglioti L, Barabás B, Faglioni F, Florini N, Lazzeretti P, Maioli M, Micskei K, Rábai G, Taddei F, Zucchi C, Pályi G (2008) On the track of absolute enantioselective synthesis. Chem Today 26(5):30–32

    CAS  Google Scholar 

  39. Barabás B, Caglioti L, Faglioni F, Florini N, Lazzeretti P, Maioli M, Micskei K, Rábai G, Taddei F, Zucchi C, Pályi G (2008) On the traces of absolute enantio selective synthesis. Am Inst Phys Conf Proc 963B:1150–1152

    Google Scholar 

  40. Arnaud GF, Barabás B, Caglioti L, Faglioni F, Florini N, Kocács G, Lazzeretti P, Maioli M, Micskei K, Pályi G, Rábai G, Taddei F, Zucchi C (2012) Towards Absolute Enantioselective Synthesis. In: Zucchi C, Caglioti L (eds) The Soai reaction and related topic (Pályi G. Artestampa – Accad Nazl Sci Lett Arti, Modena, pp 241–273

    Google Scholar 

  41. Shibata T, Morioka H, Hayase T, Choji K, Soai K (1996) A highly enantioselective catalytic asymmetric automultiplication of chiral pyrimidylalcohol. J Am Chem Soc 118:471–472

    CAS  Google Scholar 

  42. Shibata T, Yonekubo S, Soai K (1999) Practically perfect asymmetric autocatalysis using 2-alkynyl-5-pyrimidylalkanol. Angew Chem Int Ed 38:659–661

    CAS  Google Scholar 

  43. Soai K (2004) Asymmetric autocatalysis, absolute asymmetric synthesis and origin of homochirality of biomolecules. In: Pályi G, Zucchi C, Caglioti L (eds) Progress in biological chirality. Elsevier, Oxford (UK), pp 355–364

    Google Scholar 

  44. Shibata T, Hayase T, Yamamoto J, Soai K (1997) One-pot asymmetric autocatalytic reaction with remarkable amplification of enantiomeric excess. Tetrahedron Asymmetry 8:1717–1719

    CAS  Google Scholar 

  45. Sato I, Urabe H, Ishiguro S, Shibata T, Soai K (2003) Amplification of chirality from extremely low to greater than 99.5 % ee by asymmetric autocatalysis. Angew Chem Int Ed 42:315–317

    CAS  Google Scholar 

  46. Micskei K, Póta G, Caglioti L, Pályi G (2006) Empirical description of chiral autocatalysis. J Phys Chem A 110:5982–5984

    CAS  Google Scholar 

  47. Maioli M, Micskei K, Zucchi C, Caglioti L, Pályi G (2008) Evolution of chirality in consecutive asymmetric autocatalytic reactions. J Math Chem 43:1505–1515

    CAS  Google Scholar 

  48. Micskei K, Maioli M, Zucchi C, Caglioti L, Pályi G (2006) Generalization possibilities of autocatalytic absolute enantioselective synthesis. Tetrahedron Asymmetry 17:2960–2962

    CAS  Google Scholar 

  49. Buhse T (2003) A tentative kinetic model for chiral amplification in autocatalytic alkylzinc additions. Tetrahedron Asymmetry 14:1055–1061

    CAS  Google Scholar 

  50. Micskei K, Rábai G, Gal E, Caglioti L, Pályi G (2008) Oscillatory symmetry breaking in the Soai reaction. J Phys Chem B 112:9196–9200

    CAS  Google Scholar 

  51. Caglioti L, Micskei K, Pályi G (2007) Chirality of the very first molecule in absolute enantioselective synthesis. Viva Origino 35:82–84

    CAS  Google Scholar 

  52. Barabás B, Caglioti L, Zucchi C, Maioli M, Gál E, Micskei K, Pályi G (2007) Violation of distribution symmetry in statistical evaluation of absolute enantioselective synthesis. J Phys Chem B 111:11506–11510

    Google Scholar 

  53. Rényi A (1970) Probability theory. Akadémiai Kiadó, Budapest

    Google Scholar 

  54. Bartoszynski R, Niewiadomska-Bugaj M (1996) Probability and statistical inference. Wiley, New York

    Google Scholar 

  55. Ross S (2003) Probabilitá e Statistica per l’Ingegneria e le Scienze. Ed. Apogeo, Milano

    Google Scholar 

  56. Asymmetry of weak nuclear forces: Lee T D, Yang C N (1956) Question of parity conservation in weak interactions. Phys Rev 104: 254 – 258. (Errata: (1957) 106: 1371.)

  57. Quack M (2002) How important is parity violation for molecular and biomolecular chirality? Angew Chem Int Ed 41:4618–4630

    CAS  Google Scholar 

  58. Quack M, Stohner J, Willeke M (2008) High-resolution spectroscopic studies and theory of parity violation in chiral molecules. Ann Rev Phys Chem 59:741–769

    CAS  Google Scholar 

  59. Schwerdtfenger P (2010) The search for parity violation in chiral molecules. In: Computational spectroscopy: methods, experiments and applications (Gruenenberg J, ed.). Wiley-VCH, Weinheim. doi: 10.1002/9783527633272.ch7

  60. Vester F, Ulbricht TLV, Krauch H (1959) Optische Aktivität und Paritätsverletzung im β-Zerfall. Naturwissenschaften 46:68

    CAS  Google Scholar 

  61. Yamagata Y (1966) A hypothesis for the asymmetric appearance of biomolecules on earth. J Theor Biol 11:495–498

    CAS  Google Scholar 

  62. Mason SF (1984) Origin of biomolecular handedness. Nature 311:19–23

    CAS  Google Scholar 

  63. Mason SF, Tranter GE (1984) The parity–violating energy difference between enantiomeric molecules. Mol Phys 53:1091–1111

    CAS  Google Scholar 

  64. Tranter GE (1985) The parity violating energy difference between enantiomers of α-amino acids. Mol Phys 56:825–838

    CAS  Google Scholar 

  65. Tranter GE (1987) The enantio-preferential stabilization of D–ribose from parity violation. Chem Phys Lett 135:279–282

    CAS  Google Scholar 

  66. Kikuchi O, Kiyonaga H (1994) Parity-violating energy shift in helical n-alkanes. J Mol Struct THEOCHEM 312:271–274

    Google Scholar 

  67. Bakasov A, Ha T-K, Quack M (1996) Ab initio calculation of molecular energies including parity-violation interaction. In: Raulin F (ed) Proceedings of the Fourth Trieste Conference on Chemical Evolution: Physics of the Origin and Evolution of Life (Chela-Flores J. Kluwer Academic, Dordrecht, pp 287–296

    Google Scholar 

  68. Zanasi R, Lazzeretti P (1998) On the stabilization of natural L-enantiomers of α-amino acids via parity violating effects. Chem Phys Lett 286:240–242

    CAS  Google Scholar 

  69. Zanasi R, Lazzeretti P, Ligabue A, Soncini A (1999) On the stabilization of natural L-α-amino acids and D-sugars via parity-violating effects. In: Zucchi C, Caglioti L (eds) Advances in BioChirality. Elsevier, Amsterdam, pp 377–385

    Google Scholar 

  70. Schwerdtfenger P, Kühn A, Bast R, Laerdahl JK, Faglioni F, Lazzeretti P (2004) The vibrational spectrum of camphor from ab initio functional theory and parity violation in the C-C*-CO bending mode. Chem Phys Lett 383:496–501

    Google Scholar 

  71. Faglioni F, Passalaqua A, Lazzeretti P (2005) Parity violation energy of biomolecules. Orig Life Evol Biosph 35:461–475

    CAS  Google Scholar 

  72. Faglioni F, D’Agostino PS, Cadioli B, Lazzeretti P (2005) Parity violation energy of biomolecules. II, DNA. Chem Phys Lett 407:522–526

    CAS  Google Scholar 

  73. Faglioni F, Cuesta IG, Lazzeretti P (2006) Parity violation energy of biomolecules. III, RNA. Chem Phys Lett 432:263–268

    CAS  Google Scholar 

  74. Faglioni F, Lazzeretti P, Pályi G (2007) Parity violation energy of 5-pyrimidyl alkanol, a chiral autocatalytic molecule. Chem Phys Lett 435:346–349

    CAS  Google Scholar 

  75. Faglioni F, Cuesta IG (2011) Parity violation energy of biomolecules. IV, Protein secondary structure. Orig Life Evol Biosph 41:249–259

    CAS  Google Scholar 

  76. Lente G (2006) Stochastic analysis of the parity violating energy differences between enantiomers and its implications for the origin of biological chirality. J Phys Chem 110:12711–12713

    CAS  Google Scholar 

  77. Lente G (2007) The effect of parity violation on kinetic models of enantioselective autocatalysis. PhysChemChemPhys 9:6134–6141

    CAS  Google Scholar 

  78. Lente G (2004) Homogeneous chiral autocatalysis: a simple purely stochastic kinetic model. J Phys Chem A 108:9475–9478

    CAS  Google Scholar 

  79. Lente G (2005) Stochastic kinetic models of chiral autocatalysis: a general tool for the quantitative interpretation of total asymmetric synthesis. J Phys Chem A 109:11058–11063

    CAS  Google Scholar 

  80. Lente G (2011) Stochastic interpretation of enantiomeric distribution observed in the absolute asymmetric Soai reaction. Tetrahedron Asymmetry 22:1595–1599

    CAS  Google Scholar 

  81. Schiaffino L, Ercolani G (2008) Unraveling the mechanism of the Soai asymmetric autocatalytic reaction by first-principles calculations: induction and amplification of chirality by self-assembly of hexanuclear complexes. Angew Chem Int Ed 47:6832–6835

    CAS  Google Scholar 

  82. Schiaffino L, Ercolani G (2009) Amplification of chirality and enantioselectivity in the asymmetric autocatalytic Soai reaction. ChemPhysChem 10:2508–2515

    CAS  Google Scholar 

  83. Schiaffino L, Ercolani G (2010) Mechanism of the asymmetric autocatalytic Soai reaction studied by density functional theory. Chem Eur J 16:3147–3156

    CAS  Google Scholar 

  84. Ercolani G, Schiaffino L (2011) Putting the mechanism of the Soai reaction to the test: DFT study of the role of aldehyde and Dialkylzinc structure. J Org Chem 76:2619–2626

    CAS  Google Scholar 

  85. Ercolani G, Schiaffino L (2012) Mechanistic insights into the Soai reaction from formal kinetics and density functional theory calculations. In: Zucchi C, Caglioti L (eds) The Soai Reaction and Related Topic (Pályi G. Artestampa – Accad Nazl Sci Lett Arti, Modena, pp 331–346

    Google Scholar 

  86. Barabás B, Caglioti L, Micskei K, Pályi G (2009) Data-based Stochastic approach to absolute asymmetric synthesis by autocatalysis. Bull Chem Soc Jpn 82:1372–1376

    Google Scholar 

  87. Eggenberger F, Pólya G (1923) Über Statistik verketterter Vorgänge. Z Angew Math Mech 3:279–289

    Google Scholar 

  88. Feller W (1971) An introduction to probability theory and its applications. Wiley, New York, pp 229–230

    Google Scholar 

  89. Varela FJ (1972) Principles of biological autonomy. North Holland, New York, p 172

    Google Scholar 

  90. Hokkyo N (2004) Implication of Polya’s urn experiment in biochirality and cerebral lateralization. In: Pályi G, Zucchi C, Caglioti L (eds) Progress in biological chirality. Elsevier, Oxford, pp 153–158

    Google Scholar 

  91. http://cran.r-project.org/web/packages/polyapost - Description: http://cran.r-project.org/web/packages/polyapost/polyapost.pdf

  92. Reimann J (1989) Mathematical statistics with application in flood hydrology. Akadémiai Kiadó, Budapest. p, 223

    Google Scholar 

  93. Leonardo Fibonacci (Pisa, cca. 1170 – 1250).

  94. Pisano L (2002) Fibonacci’s Liber Abaci (Sigler LE, Transl.). Springer, Berlin

  95. Bóna M (2011) A walk though combinatorics (3rd edn.). World Scientific, Hackensak

    Google Scholar 

  96. Dunlap RA (1997) The golden ratio and Fibonacci numbers. World Scientific, Hackensak

    Google Scholar 

  97. Livio M (2002) The golden ratio: the story of phi, the world’s most astonishing number. Broadway Books, New York

    Google Scholar 

  98. Sato I, Omiya D, Tsukiyama K, Ogi Y, Soai K (2001) Evidence of asymmetric autocatalysis in the enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde using chiral pyrimidyl alcohol. Tetrahedron Asymmetry 12:1965–1969

    CAS  Google Scholar 

  99. Blackmond DG, McMillan CR, Ramdeehul S, Schorn A, Brown JM (2001) Origins of asymmetric amplification in autocatalytic alkylzinc additions. J Am Chem Soc 123:10103–10104

    CAS  Google Scholar 

  100. Sato I, Omiya D, Igarashi H, Kato K, Ogi K, Tsukiyama K, Soai K (2003) Relationship between the time, yield and enantiomeric excess of asymmetric autocatalysis of chiral 2-alkynyl-5pyrimidyl alkanol with amplification of enantiomeric excess. Tetrahedron Asymmetry 14:975–979

    CAS  Google Scholar 

  101. Buono FG, Blackmond DG (2003) Kinetic evidence for a tetrameric transition state in the asymmetric autocatalytic alkylation of pyrimidyl aldehydes. J Am Chem Soc 125:8978–8979

    CAS  Google Scholar 

  102. Rivera-Islas J, Lavabre D, Grevy JM, Hernandez-Lamoneta R, Royas-Cabrera H, Micheau J-C, Buhse T (2005) Mirror-symmetry breaking in the Soai reaction: a kinetic understanding. Proc Natl Acad Sci U S A 102:13743–13748

    Google Scholar 

  103. Lavabre D, Micheau J-C, Rivera-Islas J, Buhse T (2008) Kinetic insight into specific features of the autocatalytic Soai reaction. Top Curr Chem 284:67–96

    CAS  Google Scholar 

  104. Micheau J-C, Coudret C, Buhse T (2012) Systems chemistry of the Soai reaction. In: Pályi G, Zucchi C, Caglioti L (eds) The Soai reaction and related topic. Artestampa – Accad Nazl Sci Lett Arti, Modena, pp 169–196

    Google Scholar 

  105. Gánti T (1975) Organization of chemical reactions into dividing and metabolizing units. Biosystems 7:15–21

    Google Scholar 

  106. Gánti T (1984) Coupling of autocatalytic cycles as a possible explanation of chemical oscillators. React Kinet Catal Lett 24:197–202

    Google Scholar 

  107. Gánti T (1997) Biogenesis Itself. J Theor Biol 187:583–593

    Google Scholar 

  108. Gánti T (2003a) Chemoton theory, vol. 2, Theory of living systems. Kluwer, Dordrecht

  109. Gánti T (2003) The principle of life. Oxford University Press, Oxford

    Google Scholar 

  110. Eigen M, Schuster P (1977) The hypercycle. A principle of natural self-organization. Part A: emergence of the hypercycle. Naturwissenschaften 64:541–565

    CAS  Google Scholar 

  111. Eigen M, Schuster P (1978) The hypercycle. A principle of natural self-organization. Part B: The abstract hypercycle. Naturwissenschaften 65:7–41

    Google Scholar 

  112. Eigen M, Schuster P (1978) The hypercycle. A principle of natural self-organization. Part C: The realistic hypercycle. Naturwissenschaften 65:341–369

    CAS  Google Scholar 

  113. Caglioti L, Zucchi C, Pályi G (2005) Single molecule chirality. Chem Today 23(5):38–43

    CAS  Google Scholar 

  114. Caglioti L, Pályi G (2008) Chiral chemistry of single molecules. Chem Today 26(3):41–42

    CAS  Google Scholar 

  115. Caglioti L, Micskei K, Pályi G (2011) First molecules, biological chirality, origin(s) of life. Chirality 23:65–68

    CAS  Google Scholar 

  116. Caglioti L, Pályi G (2013) Single chiral molecule as possible starting element of complex chiral systems. Rend Lincei Sci Fis Nat 24:191–196

    Google Scholar 

  117. Fuss W (2009) Does life originate from a single molecule? Chirality 21:299–304

    CAS  Google Scholar 

  118. Fuss W (2009) Biological homochirality as a result from a single event. Colloids Surf B: Biointerface 74:498–503

    CAS  Google Scholar 

  119. Carroll JD (2009) A new definition of life. Chirality 21:354–358

    CAS  Google Scholar 

  120. Mauksch M, Tsogoeva SB, Martynova IM, Wei S (2007) Evidence for asymmetric autocatalysis in organocatalytic reactions. Angew Chem Int Ed 46:393–396

    CAS  Google Scholar 

  121. Mauksch M, Tsogoeva SB, Martynova IM, Wei S (2007) Demonstration of spontaneous chiral symmetry breaking in asymmetric Mannich and aldol reactions. Chirality 19:816–825

    CAS  Google Scholar 

  122. Mauksch M, Tsogoeva SB (2008) Spontaneous emergence of homochirality via coherently coupled antagonistic and reversible reaction cycles. ChemPhysChem 9:2359–2372

    CAS  Google Scholar 

  123. Mauksch M, Wei S, Freund M, Zamfir A, Tsogoeva SB (2010) Spontaneous mirror symmetry breaking in the aldol reaction and its potential relevance to prebiotic chemistry. Orig Life Evol Biosph 40:79–91

    CAS  Google Scholar 

  124. Held FE, Fingerhut A, Tsogoeva SB (2012) Insight into the spontaneous emergence of enantioselectivity in an asymmetric Mannich reaction carried out without external catalyst. Tetrahedron Asymmetry 23:1663–1669

    CAS  Google Scholar 

  125. Amedjkouh M, Brandberg M (2008) Asymmetric autocatalytic Mannich reaction in the presence of water and its implication in prebiotic chemistry. Chem Commun 3043–3045

  126. Wang X, Zhang Y, Tan H, Wang Y, Han P, Wang DZ (2010) Enantioselective organocatalytic Mannich reactions with autocatalysis and their mimics. J Org Chem 75:2403–2406

    CAS  Google Scholar 

  127. Kovács G, Gyarmati J, Somsák L, Micskei K (1996) Long—lived glycosyl-chromium(III) intermediates in aqueous medium. Preparation of Pyranoid Glycals. Tetrahedron Lett 37:1293–1296

    Google Scholar 

  128. Micskei K, Gyarmati J, Kovács G, Makleit S, Simon C, Szabó Z, Marton J, Hosztafi S, Reinke H, Drexler H-J (1999) Reactions of nepenthone with chromium(II) reagents in neutral aqueous medium. Eur J Org Chem 149–153

  129. Micskei K, Kiss-Szikszai A, Gyarmati J, Hajdu C (2001) Carbon-carbon bond formation in neutral aqueous medium by modification of the Nozaki-Hiyama reaction. Tetrahedron Lett 42:7711–7713

    CAS  Google Scholar 

  130. Gyarmati J, Hajdu C, Dinya Z, Micskei K, Zucchi C, Pályi G (1999) Asymmetric induction of amino acid ligands in chromium(II)-assisted reduction of ketones. J Organomet Chem 586:106–109

    CAS  Google Scholar 

  131. Patonay T, Hajdu C, Jenkő J, Lévai A, Micskei K, Zucchi C (1999) Enantioselective reduction of prochiral ketones by chromium(II) complexes with amino acid ligands as a source of chirality. Tetrahedron Lett 40:1373–1374

    CAS  Google Scholar 

  132. Micskei K, Hajdu C, Wessjohann LA, Mercs L, Kiss-Szikszai A, Patonay T (2004) Enantioselective reduction of prochiral ketones by chromium(II) amino acid complexes. Tetrahedron Asymmetry 15:1735–1744

    CAS  Google Scholar 

  133. Micskei K, Holczknecht O, Marchis V, Lévai A, Patonay T, Zucchi C, Pályi G (2005) Enantioselective reduction of C=N double bond by chromium(II) complexes of natural amino acids. Chirality 17:511–514

    CAS  Google Scholar 

  134. Micskei K, Holczknecht O, Hajdu C, Patonay T, Marchis V, Meo M, Zucchi C, Pályi G (2003) Asymmetric synthesis of amino acids by Cr(II) complexes of natural amino acids. J Organomet Chem 682:143–148

    CAS  Google Scholar 

  135. Micskei K, Patonay T, Caglioti L, Pályi G (2010) Amino acid chirality for enantioselective syntheses. Chem Biodivers 7:1660–1669

    CAS  Google Scholar 

  136. Florini N, Arnaud GF, Kónya B, Zucchi C, Pályi G (2009) Synthesis of a water-soluble chiral NMR shift reagent: (S)-PDTA. Tetrahedron Asymmetry 20:1036–1039

    CAS  Google Scholar 

  137. Arnaud GF, Florini N, Caglioti L, Zucchi C, Pályi G (2009) Fast enantioselective amino acid quantitative C-13 NMR determination by a praseodymium chiral shift reagent. Tetrahedron Asymmetry 20:1633–1636

    CAS  Google Scholar 

  138. Florini N, Faglioni F, Zucchi C, Caglioti L, Pályi G (2010) Aqueous-phase quantitative NMR determination of amino acid enantiomer ratio by C-13 NMR using chiral neodymium shift reagent. Amino Acids 38:1343–1350

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyula Pályi.

Additional information

This paper belongs to Topical Collection 6th Conference on Modeling & Design of Molecular Materials in Kudowa Zdrój (MDMM 2014)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barabás, B., Zucchi, C., Maioli, M. et al. Stochastic and empirical models of the absolute asymmetric synthesis by the Soai-autocatalysis. J Mol Model 21, 33 (2015). https://doi.org/10.1007/s00894-015-2576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2576-6

Keywords

Navigation