Skip to main content
Log in

Deamination features of 5-hydroxymethylcytosine, a radical and enzymatic DNA oxidation product

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The 5-methylcytosine derivative 5-hydroxymethylcytosine (5hmCyt), which is generated via enzymatic oxidation, is sometimes referred to as the sixth nucleobase due to its widespread presence in the DNA of brain and embryonic stem cells. In this study, we used density functional based methods and reactivity indices from conceptual DFT to explore the mechanism and key features of the hydrolytic deamination of 5hmCyt. The data obtained are used to compare and contrast this deamination reaction with those of other cytosine derivatives. The deamination process for 5hmCyt is similar to the corresponding processes for other unsaturated derivatives in that the amino form is the reactive one and water addition is the rate-limiting step. However, several differences due to the rotameric asymmetry of the current system are also noted.

Exploration of the spontaneous deamination of 5-hydroxymethylcytosine using computational chemistry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reik VW, Dean WL (2001) Science 293:1089

    Article  CAS  Google Scholar 

  2. Chen ZX, Riggs AD (2011) J Biol Chem 286:18347

    Article  CAS  Google Scholar 

  3. Law JA, Jacobsen SE (2010) Nat Rev Genet 11:204

    Article  CAS  Google Scholar 

  4. Bienvenu C, Cadet J (1996) J Org Chem 61:2632

    Article  CAS  Google Scholar 

  5. Wagner JR, Cadet J (2010) Acc Chem Res 43:564

    Article  CAS  Google Scholar 

  6. Branko MM, Ficz G, Reik W (2012) Nat Rev Genet 13:7

    Google Scholar 

  7. Kriukienè E, Liutkeviciute Z, Klimasauskaas S (2012) Chem Soc Rev 41:6916

    Article  Google Scholar 

  8. Masuda T, Shinohara H, Kondo M (1975) J Radiat Res 16:153

    Article  CAS  Google Scholar 

  9. Close DM (2003) J Phys Chem B 107:864

    Article  CAS  Google Scholar 

  10. Tanabe K, Yamada H, Nishimoto S (2007) J Am Chem Soc 129:8034

    Article  CAS  Google Scholar 

  11. Bienvenu C, Wagner JR, Cadet J (1996) J Am Chem Soc 118:11406

    Article  CAS  Google Scholar 

  12. Yamada H, Tanabe K, Ito T (2008) Chem Eur J 14:10453

    Article  CAS  Google Scholar 

  13. Shao J, Huang C-H, Kalyanaraman B, Zhu B-Z (2013) Free Rad Biol Med 60:177

    Article  CAS  Google Scholar 

  14. Cadet J, Douki T, Ravanat J-L (2010) Free Rad Biol Med 49:9

    Article  CAS  Google Scholar 

  15. Münzel M, Globisch D, Brück T, Wagner M, Welzmiller V, Michalakis S, Müller M, Biel M, Carell T (2011) Angew Chem Int Ed Engl 49:5375

    Article  Google Scholar 

  16. Kryaucionis S, Heintz N (2009) Science 324:929

    Article  Google Scholar 

  17. Taliliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iye LM, Liu DR, Aravind L, Rao A (2009) Science 324:930

    Article  Google Scholar 

  18. Penn NW, Suwalski R, O’Riley C, Bojanowski K, Yura R (1979) Biochem J 126:781

    Google Scholar 

  19. Münzel M, Globisch D, Carell T (2011) Angew Chem Int Ed Engl 50:6460

    Article  Google Scholar 

  20. Jurkowski TP, Jeltsch A (2011) ChemBioChem 12:2543

    Article  CAS  Google Scholar 

  21. Nabel CS, Manning SA, Kohli RM (2012) ACS Chem Biol 12:20

    Article  Google Scholar 

  22. Freudenberg JM, Ghosh S, Lackford BL, Yellaboina S, Zheng X, Li R, Cuddapah S, Wade PA, Hu G, Jothi R (2012) Nucleic Acids Res 40:3364

    Article  CAS  Google Scholar 

  23. Pérez C, Martinez-Calle N, Martin-Subero JL, Segura V, Delabesse E, Fernandez-Mercado M, Garate L, Alvarez S, Rifon J, Varea S, Boultwoo J, Wainscoat JS, Cigudosa JC, Calasan MJ, Cross NCP, Prósper F, Agirre X (2012) PLos One e31605

  24. Wagner M, Eigenbrod S, Widmann D, Münzel M, Müller M, Pfaffeneder T, Hackner B, Feiden W, Schüller U, Carell T, Kretzschmar HA (2012) Int J Cancer 131:1577

    Article  Google Scholar 

  25. Fu Y, He C (2012) Curr Opin Chem Biol 16:516

  26. Iqbal K, Jin S-G, Szabo PE (2011) Proc Natl Acad Sci USA 108:3642

  27. Loenarz C, Schofield CJ (2011) Trends Biochem Sci 36:7

    Article  CAS  Google Scholar 

  28. Pfaffeneder T, Hackner B, Truβ M, Münzel M, Müller M, Deiml CA, Hagemeier C, Carell T (2011) Angew Chem Int Ed 50:7008

    Article  CAS  Google Scholar 

  29. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Science 333:1300

    Article  CAS  Google Scholar 

  30. He YF, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Dai X, Song C-X, Zhang K, He C, Xu G-L (2011) Science 333:1303

  31. Maiti A, Drohat AC (2011) J Biol Chem 286:35334

    Article  CAS  Google Scholar 

  32. Hashimoto H, Liu Y, Upadhyay CY, Howerton SB, Vertino PM, Zhang X, Cheng X (2012) Nucleic Acids Res 40:4841

  33. Boorstein RJ, Cummings A Jr, Marenstein DR, Chan MK, Ma Y, Neubert TA, Brown SM, Teebor GW (2001) J Biol Chem 276:41991

    Article  CAS  Google Scholar 

  34. Hendric B, Hardeland U, Ng HH, Jiricny J, Bird A (1999) Nature 401:301

    Article  Google Scholar 

  35. Schiesser S, Pfaffeneder T, Sadeghian K, Hackner B, Steigenberger B, Schröder AS, Steinbacher J, Kashiwazaki G, Höfner G, Wanner KT, Ochsenfeld C, Carell T (2013) J Am Chem Soc 135:14593

    Article  CAS  Google Scholar 

  36. Labet V, Grand A, Morell C, Cadet J, Eriksson LA (2008) Theor Chem Acc 120:429

    Article  CAS  Google Scholar 

  37. Labet V, Morell C, Grand A, Toro-Labbé A (2008) J Phys Chem A 112:11487

    Article  CAS  Google Scholar 

  38. Labet V, Morell C, Cadet J, Eriksson LA, Gran A (2009) J Phys Chem A 113:2524

    Article  CAS  Google Scholar 

  39. Labet V, Morell C, Douki T, Cadet J, Eriksson LA, Grand A (2010) J Phys Chem 114:1826

    Article  CAS  Google Scholar 

  40. Grand A, Cadet J, Eriksson LA, Labet V, Jorge N, Schreiber ML, Douki T, Morell C (2012) Theor Chem Acc 131:1187

    Article  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, rev. C.02, Gaussian, Inc., Wallingford

  42. Becke AD (1993) J Chem Phys 9:5648

    Article  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  44. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  45. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  46. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  47. Cancès MT, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  Google Scholar 

  48. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151

    Article  CAS  Google Scholar 

  49. Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43

    Article  CAS  Google Scholar 

  50. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  51. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  Google Scholar 

  52. Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065

    Article  CAS  Google Scholar 

  53. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101:524

    Article  Google Scholar 

  54. Chermette H (1999) J Comp Chem 20:129

    Article  CAS  Google Scholar 

  55. Parr RG, Yang W (1995) Annu Rev Phys Chem 46:701

    Article  CAS  Google Scholar 

  56. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  57. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  58. Parr RG, Szentpaly L, Li SB (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  59. Morell C, Labet V, Grand A, Chermette H (2009) Phys Chem Chem Phys 11:3417

    Article  CAS  Google Scholar 

  60. Chattaraj PK, Maiti B, Sarkar U (2003) J Phys Chem A 107:4973

    Article  CAS  Google Scholar 

  61. Parr RG, Yang W (1984) J Am Chem Soc 106:4049

    Article  CAS  Google Scholar 

  62. Ayers PW, Levy M (2000) Theor Chem Acc 103:353

    Article  CAS  Google Scholar 

  63. Padmanabhan J, Parthasarathi R, Elango M, Subramanian V, Krishnamoorthy BS, Gutierrez-Oliva S, Toro-Labbé A, Roy DR, Chattaraj PK (2007) J Phys Chem A 111:9130

    Article  CAS  Google Scholar 

  64. Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205

    Article  CAS  Google Scholar 

  65. Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Let 425:342

    Article  CAS  Google Scholar 

  66. Morell C, Ayers PW, Grand A, Chermette H (2011) Phys Chem Chem Phys 13:9601

    Article  CAS  Google Scholar 

  67. Cardenas C, Rabi N, Ayers P, Morell C, Jaramillo P, Fuentealba P (2009) J Phys Chem A 113:8860

    Article  Google Scholar 

  68. Ayers PW, Morell C, De Proft F, Geerlings P (2007) Chem Eur J 13:8240

    Article  CAS  Google Scholar 

  69. Breneman CM, Wiberg KB (1990) J Comp Chem 11:361

    Article  CAS  Google Scholar 

  70. Koopmans TA (1934) Physica 1:104

    Article  Google Scholar 

  71. Parr RG, Zhou Z (1993) Acc Chem Res 26:256

    Article  CAS  Google Scholar 

  72. Lindahl T, Nyberg B (1974) Biochemistry 13:3405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Faculty of Science at the University of Gothenburg and the Swedish Science Research Council (VR) are gratefully acknowledged for financial support [LAE]. AG and CM thank INSERM for financial support. The research benefited from the support of Aviesan ITMO Cancer within the “Cancer Plan 2009–2013” and the application of Action 3.3. AG furthermore acknowledges support from the Universidad Autonoma de Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif A. Eriksson.

Additional information

This paper belongs to Topical Collection QUITEL 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grand, A., Jorge, N., Morell, C. et al. Deamination features of 5-hydroxymethylcytosine, a radical and enzymatic DNA oxidation product. J Mol Model 20, 2290 (2014). https://doi.org/10.1007/s00894-014-2290-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2290-9

Keywords

Navigation